PointNet++复现

本文介绍了如何复现PointNet++在三维深度学习中的分类任务。通过下载数据集并进行训练,模型在测试中达到了0.901/0.907的准确率。
摘要由CSDN通过智能技术生成

代码运行

分类任务

python train.py

下载数据集并训练,后可接参数,这里使用--batch_size=4

python evaluate.py --num_votes 12 

测试 0.901/0.907

eval mean loss: 0.372334
eval accuracy: 0.901945
eval avg class acc: 0.876547
  airplane:     1.000
   bathtub:     0.920
       bed:     0.950
     bench:     0.800
 bookshelf:     0.930
    bottle:     0.930
      bowl:     1.000
       car:     0.980
     chair:     0.950
      cone:     0.900
       cup:     0.850
   curtain:     0.950
      desk:     0.930
      door:     0.800
   dresser:     0.767
flower_pot:     0.150
 glass_box:     0.920
    guitar:     1.000
  keyboard: 
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>