大模型2024:追求变现,加速洗牌

文章探讨了百川智能新一轮融资传闻,揭示了资本对AI新创企业的关注点从大模型转向应用。TOC端和TOB端的商业化模式面临挑战,AI硬件盈利周期长,大模型的成本管理和商业化成为焦点。同时,海外市场的竞争和监管环境影响着国内AI企业的未来发展。
摘要由CSDN通过智能技术生成

据相关媒体报道,前搜狗公司CEO王小川创立的百川智能正进行新一轮数亿美元融资,这或将成为2024年国内AI领域最大融资之一。

虽说百川智能对本次融资传闻并未回应,但有投资人透露,融资尚未最终完成,具体估值和市场传闻的18亿美元有所出入。

除百川智能估值超百亿元外,目前月之暗面、MiniMax估值分别为超23亿美元和超25亿美元,智谱AI估值超百亿元,这四家AI新创企业在资本助推下,正成为生成式AI时代的“新AI四小龙”。以智谱AI为例,2023年Q3一个季度中,智谱AI直接完成B5轮融资。


图源:天眼查

资本押注“新AI四小龙”的背后,或是2023年全球资本市场对AI大模型高热情的缩影。

公开数据显示,2023年中国AI领域投融资数量约为232笔,融资总额约为20亿美元。CBInsights数据显示,2023全年生成式AI新创在全球获得约204亿美元融资,是2022年36亿美元的5倍以上。

进入到2024年,资本市场对AI大模型正逐渐从火热到趋冷。一级市场上,IT桔子数据显示,2024年Q1 AI生产和AI行业应用融资金额分别为123.89亿元和74.01亿元,对应投资事件数量分别为36起和65起。

若考虑“新AI四小龙”拿下行业大笔融资,其他AI新创企业正面临融资难、融资少的问题,AI应用也成为资本关注的新方向。

海外市场和国内类似,投资Facebook和Salesforc的Meritech Capital,以及TCV、General Atlantic、Blackstone等机构纷纷暂停对生成式AI的关注。Gartner分析师John-David Lovelock称,大模型数十亿美元的投资数量已经放缓且几乎已经结束,热钱涌向AI 应用。


来源:The Information Database

二级市场上,AI大模型已经很难拉动企业股价上涨。以4月17日为例,百度、360、科大讯飞、金山办公等多家企业股价较2023年最高点股价均出现明显跌幅,部分企业跌幅更是超60%。


图源:基于公开信息整理

这背后则是大模型对企业业绩拉动低于市场预期,综合多家上市公司2023年财报来看,除百度、美图借助AI实现利润的大幅度增长外,AI对其他上市公司业绩贡献有限。2023年百联股份、完美世界净利润更是出现大幅度下滑。


图源:各大企业财报

一二级市场本质都透露出:随着AI大模型技术快速进步,企业要如何对冲大模型高昂的训练成本以及研发成本?AI又要如何赚钱,才能带动AI新创企业业绩持续增长,快速完成IPO实现上市呢?

当商业化成为2024年AI大模型角逐的新方向后,商业模式存疑以及营收增长乏力的AI新创企业将加速出清,行业将迎来真正洗牌阶段。

01.
TOC端的订阅模式和智能硬件需数年积累

自2023年大模型发展至今,TOC端的大模型商业化一种为互联网订阅模式。如文心一言的连续包月和包年会员价格分别为49.9元和588.8元。智谱AI根据用户访问官网期间使用的tokens进行收费。


图源:文心一言官网

另一种为内建AI能力并将其搭载到智能硬件上。除常见的AI手机、AI学习机、AI PC、AI电视机外,美国新创AI企业Humane也推出如徽章般大小且没有任何屏幕的AI Pin。该设备以Cosm OS方式连接手机软件服务,并将信息投影到用户手掌上,以声控方式进行互动。

在这里插入图片描述

图源:亚马逊

但从AI智能硬件来看,不管是去年热销的华为Mate60,还是三星Galaxy S24全球上市后,截至今年2月底拿下653万台的出货量,均是厂商旗舰机型。且百万或千万级出货量所赚取的利润,在厂商高额的研发投入前几乎微乎其微。

同时海外消费市场的改变,正倒逼厂商将搭载AI功能的智能硬件产品,进行价格下放。

有供应链人士透露,目前海外多国通胀仍处在高位,三星和苹果日前纷纷下调2024年出货预期。相关研究机构也将2024年智能手机的增速从原定的5%—10%下调到5%左右或更低。基于此,手机SoC和品牌厂商在海外市场纷纷加速将AI功能下放到中低端机型上,希望提高AI手机的渗透率。

同样的情况也出现在AI PC市场上,现阶段消费者可能会因PC搭载的AI功能而增加购买意愿,但并不会支付更高价格,AI对PC厂商暂时还没有明显的增值效应。PC厂商想要对冲研发成本,只能将AI PC价格下放。

若价格下放带动出货量和使用量增长时,厂商必须投入更多的大模型算力,才能保证用户体验,这又拉高厂商的运营成本。且在当前消费者换购智能手机和PC等智能硬件周期拉长下,算力芯片、周边芯片等硬件产品也需提前3—5年准备,才能保证升级的服务不是微升级。

智能硬件厂商也需针对AI场景服务持续打出差异化,否则在电商平台低价就能购买到互联网厂商的大模型会员下,高价AI硬件产品会让消费者觉得性比价不足,劝退消费者。

更深层来看,AI智能硬件产品是在现有产品的基础上进行功能升级或创新,智能硬件市场消费逻辑并没有改变。这意味着通过AI设备带动销量增长实现规模化盈利,时间周期可能较长。

考虑到全球智能硬件细分市场,基本被头部大厂所掌握,且这些企业多以自研AI大模型为主,留给AI新创企业的机会有限。

意识到该问题的国内AI新创企业,多以互联网订阅方式为主,场景多集中在聊天机器人及衍生的AI虚拟陪伴等领域。如MiniMax的星野抓住了以国产女性游戏用户群为核心的市场需求,在聊天对话的基础上为产品带来增值收费点。

想要跑通互联网订阅模式,核心需解决用户增长、用户体验、用户留存等关键问题。尤其是在国内TOC端用户付费意识不强下,更需保证大模型APP DAU的持续增长。

在用户增长上,互联网大厂基于流量、品牌、用户积累等优势,获取用户增速以及成本会低于AI新创企业。但若是参考ChatGPT、妙鸭相机、kimi的发展,AI新创企业若能够打造出爆款大模型,这在节省大量推广成本的同时,也能实现指数级增长。

如今年3月份Web端,国内访问量最大的AI产品是百度翻译、百度文心和Kimi,访问量分别是5744万、1479万和1219万。其中,kimi访问量较上月同期翻了3倍。


图源:Similar

但目前大模型APP用户留存堪忧,Quest mobile数据显示,2024年1月国内TOP10大模型APP活跃用户比例均低于20%,三日留存率均低于50%,万卷AI卸载率更是达到94.3%。

2024年百模大战下,各类AI场景应用层出不穷,这让用户愈发挑剔的同时,各家企业想要打造爆款大模型APP难度也在增加,AI新创企业通过信息流、应用商店、App Store获取用户增长的成本将持续走高。如何不断进行场景创新,保证用户留存成为AI新创企业的难题。


图源:Quest mobile

用户留存的不稳定,将直接影响AI企业的运营成本。如当用户访问量激增时,AI企业需将大模型算力扩容。可当访问量暴跌后,又出现大模型算力闲置浪费问题。

考虑当前大模型算力成本居高不下,如何进行成本均摊减轻计算负担,如何进行大模型算力的“削峰填谷”,又是AI公司所面临的另一难题。

02.
TOB端:AI大模型正沿着SaaS的路径发展

和TOC端大模型商业化需进行用户长期积累,才能跑通盈利方式不同的是,TOB端大模型商业化收效可能更快。AI大模、SaaS、云等各类软件,只有给企业带来真正的降本增效才有价值,才有企业主愿意买单。

目前AI大模型给企业带来的降本增效价值正在体现。今年年初Sore爆火后,美国多家好莱坞公司开启裁员。

人力资源提供商Adecco Group日前发布的报告显示,因AI大模型技术快速进步,在对全球2000家大公司高管调查后发现,约41%的高级管理人员预计员工人数将减少。谷歌、微软等海外巨头企业,今年年初至今纷纷开启裁员潮。

但国内企业主对软件购买意愿偏低,这点不管是从中美软件GDP软件产业占GDP收入差异,还是国内SaaS厂商普遍低于美国估值均能看出。更重要的是,目前TOB端大模型给企业带来的价值,仍处在割裂状态。


图源:wind

爱分析报告指出,2023年国内大模型市场规模仅有50亿元,2024年也仅增加到120亿元。金蝶和用友2023年虽相继发布大模型产品,手中也掌握着大量TOB端企业资源。但两家企业2023年的财报并不好看,金蝶净利润增速虽由负转正,但营收增速几乎停滞,用友净利润增速更是暴跌500%以上。


图源:企业预警通

如何让国内TOB端企业主真正意识到大模型价值,尤其是相较于传统SaaS服务具有更大价值。成为发力TOB端大模型市场,AI企业迫切需要解决的问题。

更进一步看,TOB端大模型商业定制化服务,后续将面临两个棘手问题。

一方面,价格力是SaaS企业和云企业保持竞争力的关键。今年2月份,阿里云在国内市场开启降价后,4月份对离岸数据中心提供支持的多款产品继续降价,部分产品降幅高达59%。

另对标新能源汽车行业来看, 2023年至今的新能源汽车价格战彻底进入到白热化阶段。且主机厂也意识到短期内价格战不会停止,纷纷找上游自动驾驶方案厂商要利润。

主机厂作为强甲方,有着绝对的话语权。自动驾驶方案解决厂商基于拿下主机厂更多订单增加品牌知名度,以及主机厂招标阶段普遍要求企业自动驾驶有完整的项目经验,只能不断降价。

随着当前布局TOB端商业化大模型的AI企业增多,很难保证发生在自动驾驶方案解决商身上的故事,未来不会出现在AI企业身上。同行之间价格战、下游客户要求降价,未来AI企业又是否会像自动驾驶企业那样出现增收不增利的情况呢?

另一方面,为TOB端定制大模型除老生常谈的数据安全、部署成本、专业化、对客户需求痛点理解高外。AI企业也面临SaaS企业和云服务企业类似的问题。如定制化服务可复制和重复性程度低、企业投入高、客户跟踪时间长等。尤其是大型企业的回款周期相对较长,更是对AI新创企业的现金流要求极高。

03.

  • AI新创淘汰赛打响,行业迎来加速整合*

目前在海外市场上,AI新创淘汰赛已经开始打响,部分经营策略错误的AI新创企业正被大厂收割。如美国的Banana、Togetther、RunPod等企业,以低廉的价格向无法负担大厂云端服务的AI新创企业,提供GPU服务器租赁服务。在2023年AI火热和GPU缺货严重下,这些企业也拿下大量融资。

但当AI新创在获得大量融资后,就会向GPU服务器大厂购买服务,而不是找“Banana”租赁。且相较于应用范围广泛的大模型,不少企业希望采用在专业领域更加正确且成本更低的小模型。这让“Banana”们的需求严重下滑,Banana也在今年3月份宣布终止该服务。

另据彭博社报道,今年3月份微软将InflectionAI创办人Mustafa Suleyman与70名员工收入麾下,并投资6.5亿美元取得AI软件授权。

投资机构Atreides Management高层GavinBaker称,从人类回馈中进行强化学习的方法来说,若无法取得专有、即时的数据,且没有足够的部署管道,基础模型或将成为历史上折旧最快的资产。

彭博社专栏作家Olson称,这些靠创投扶植的AI初创虽有技术能力,但建构足以支持文字和影像生成式AI的运算能力并非易事,需耗费数千万美元。未来Anthropic、Character Ai、Perplexity等AI新创企业将遭遇和InflectionAI类似的难题,即无法找到可行的商业模式。

Google、亚马逊、Meta等大型科技公司正对初创AI企业持续观望,在不触及反垄断的前提下,后续或将收购这些AI初创公司大量的人才和技术。

海外市场正上演的这一幕,未来也将加速在国内市场上演。一方面,国内大模型商业化本就和欧美存在一定差异。若想靠出海拉动AI新创企业业绩增长,需面对严格的法规监管和数据合规挑战。

斯坦福大学AI研究院发布的《The AI Index Report 2024》报告指出,过去5年来美国AI监管法规显著增加,尤其是2023年共有25套AI相关法规,对比2016年时只有1套。

海外的微软、谷歌、OpenAI等科技企业,一直通过更高研发投入抢夺全球顶尖AI人才。如谷歌AI部门Deep Mind首席执行官Demis Hassabis预计该公司在人工智能技术上的支出可能超过1000亿美元。

另一方面,追求投资收益回报率最大化是资本不变的目标,但目前全球市场上AI新创企业的IPO并不顺利。如美国Reddit在IPO中称,AI将成为公司新的增长领域。

但摩根大通相关报告指出,截至2023年Q4,Reddit的基础用户为7300万。即使2026年DAU能增加到1.09亿,但和Meta、Facebook、X等社交APP相比,仍存在较大差异。基于此,高盛和摩根大通分别给予“中性”评级和40美元和47美元的目标价。


图源:路透社

若国内AI新创企业在用户和收入增长方面,迟迟达不到资本预期。在当前资本市场寒冬下,资本又有多少耐心等待呢?无法拿到新一轮融资的AI新创企业,又要如何面对不断AI上游不断上涨的价格呢?三星、台积电、高通、美光等AI上游企业,2024年Q1营收和利润增速均超出预期。

毋庸置疑的是,未来AI大模型一定会产生更大的经济价值。只是在国内AI大模型商业化尚不明朗下,又有多少企业会倒在黎明前的黑夜呢?

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值