arxiv近期更新了一本东北大学最新编撰的大模型的入门书籍,该书旨在概述大型语言模型的基本概念,并介绍相关技术。正如标题所示,这本书更侧重于大型语言模型的基础方面,而不是全面涵盖所有前沿方法,深入浅出,非常适合帮助大模型入门的小白对大语言模型有一个全面的了解。
这份完整版的大模型书籍已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
这本书主要介绍大语言模型的基础概念、相关技术,涵盖预训练、生成模型、提示方法和对齐方法等内容。
预训练
预训练方法:介绍无监督、监督和自监督预训练,当前多数先进NLP模型基于自监督预训练。还讲述了预训练模型的应用方式,包括微调(适用于序列编码模型)和提示(适用于序列生成模型)。
自监督预训练任务:针对解码器架构、编码器架构和编解码器架构,分别介绍其预训练方式,如解码器仅预训练、掩码语言建模等,并对比了不同预训练任务的特点。
BERT模型:以BERT为例,阐述其标准模型的训练方式、损失函数、模型设置,以及后续在模型扩展、效率提升和多语言支持方面的改进,同时介绍了BERT模型在多种NLP任务中的应用方式。
生成模型
LLMs简介:介绍LLMs基本概念,包括基于解码器的Transformer架构、训练方式、微调以及与世界对齐的方法(如监督微调、从人类反馈中学习),还讲述了提示LLMs的多种方式及其在不同任务中的应用。
大规模训练:讨论LLMs大规模训练中的数据准备、模型修改、分布式训练和缩放定律等问题。数据准备涉及数据质量、多样性、偏差和隐私等;模型修改介绍了层归一化、激活函数等方面的改进;分布式训练介绍了多种并行方式;缩放定律描述了模型性能与训练因素间的关系。
长序列建模:探讨处理长序列的方法,从高性能计算角度介绍低精度实现、硬件感知技术等;还介绍了高效架构、缓存和内存优化、跨头和跨层共享以及位置外推和插值等技术,同时讨论了长上下文LLMs的相关问题。
提示方法
通用提示设计:介绍提示的基本概念、上下文学习的方式,以及提示工程的策略,如清晰描述任务、引导LLMs思考、提供参考信息和注意提示格式等,并给出了文本分类、信息提取等多种NLP任务的提示示例。
高级提示方法:包括思维链(CoT)、问题分解、自优化、集成和检索增强生成(RAG)与工具使用等方法,这些方法可提高提示效果,解决复杂问题。
学习提示:讨论自动提示技术,如提示优化(通过搜索空间、性能估计和搜索策略来自动设计和优化提示)、软提示(以隐藏分布式表示替代传统文本提示,减少计算负担)和提示长度缩减(简化提示文本)。
对齐方法
LLM对齐概述:介绍LLM对齐的三种常用方法,即使用标记数据微调、使用奖励模型微调以及在推理时进行对齐,通常这些方法按顺序使用。
指令对齐:通过监督微调让LLMs学会执行指令,包括单轮和多轮预测的微调方法,还讨论了微调数据的获取方式,如手动生成和自动生成,以及指令泛化等问题。
附录:书序言翻译
大型语言模型起源于自然语言处理,但无疑已成为近年来人工智能领域最具革命性的技术进步之一。大型语言模型带来的一项重要见解是,可以通过大规模的语言建模任务来获取世界和语言知识,从而我们可以创建一个处理各种问题的通用模型。这一发现深刻地影响了自然语言处理及相关学科的研究方法。我们已经从使用大量标记数据从零开始训练专门系统,转向一种新范式:利用大规模预训练来获得基础模型,然后对这些模型进行微调、对齐和提示。
本书旨在概述大型语言模型的基本概念,并介绍相关技术。正如标题所示,这本书更侧重于大型语言模型的基础方面,而不是全面涵盖所有前沿方法。本书包含四个章节:
● 第一章介绍预训练的基础知识。这是大型语言模型的基础,此处将讨论常见的预训练方法和模型架构。
● 第二章介绍生成式模型,这是我们今天通常所指的大型语言模型。在介绍构建这些模型的基本过程之后,我们还将探讨如何扩展模型训练和处理长文本。
● 第三章介绍大型语言模型的提示方法。我们将讨论各种提示策略,以及更高级的方法,如思维链推理和自动提示设计。
● 第四章介绍大型语言模型的对齐方法。本章侧重于基于人类反馈的指令微调和对齐。
如果读者在机器学习和自然语言处理方面有一定的背景知识,并且对诸如Transformer之类的神经网络有一定的了解,那么阅读这本书将会比较容易。然而,即使没有这些先验知识,这也是完全没问题的,因为我们已尽可能使每一章的内容自成一体,确保读者不会因阅读难度过大而感到负担。
在撰写这本书的过程中,我们逐渐意识到它更像是我们在学习大型语言模型时所做“笔记”的汇编。通过这种笔记式的写作风格,我们希望为读者提供一个灵活的学习路径。无论他们希望深入探究某个特定领域,还是全面理解大型语言模型,他们都将在这些“笔记”中找到所需的知识与洞见。
这份完整版的大模型书籍已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】