具身智能(Embodied Intelligence)概述

目录

一、引言 

二、具身感知

三、具身交互

四、具身智能体 

 五、虚拟到现实 


一、引言 

最近无论是斯坦福机器人炒虾,还是特斯拉官宣机器人进厂,都赚足了眼球,实力证明了具身智能(Embodied Intelligence)的火爆。

先不说具身智能是实现AGI的关键环节,也是未来研究的重要方向,从发论文的角度来看,今年的各大顶会,比如CVPR,具身智能就排了热门研究领域前三,可见入局具身智能早已成了必然趋势。

具身智能(Embodied Intelligence)是人工智能和认知科学中的一个研究方向,着重于研究智能体如何通过与物理环境的互动来获得和展现智能。与传统的计算机智能不同,具身智能强调智能体的身体和环境在认知过程中的重要性。这种研究关注如何通过身体的感知、运动和与环境的交互来实现学习和智能行为。具身智能的核心理念是,智能不仅仅是计算和信息处理的结果,而是身体与环境相互作用的产物。通过研究和模拟这种互动,科学家们希望能更好地理解和实现类似人类的智能系统。

目前具身智能主要四个研究目标:具身感知、具身互动、具身智能体、虚拟到现实。如果大家想冲顶会,建议从这四个角度入手。

二、具身感知

论文:Embodiedscan: A holistic multi-modal 3d perception suite towards embodied ai

方法:EmbodiedScan是一个新的多模态3D感知数据集,提供了丰富的室内场景注释,支持自我中心视角下的语言基础的全面3D场景理解。基于此数据集,论文提出了Embodied Perceptron框架,用于处理多视图输入,并在3D感知和语言基础任务上表现出色。

创新点:

  • EmbodiedScan:从自我中心视图实现基于语言的整体三维场景理解的多模态感知套件。

  • 基于一个大规模的数据集,提出了一个基准框架,能够处理任意数量的视图输入,使用统一的多模态编码器和任务特定的解码器。

三、具身交互

论文:Dexterous Grasp Transformer

方法:论文提出了一种名为Dexterous Grasp Transformer(DGTR)的新框架,用于生成灵巧抓取姿势。DGTR利用transformer解码器和可学习的抓取查询,仅通过一次前向传播就能从物体的点云中预测出多样化的可行抓取姿势集合。

创新点:

  • 动-静匹配训练策略(DSMT):通过引入动-静匹配训练策略,在显著提高Q1的同时,减少了约50%的穿透损失。

  • 对抗平衡的测试时适应(AB-TTA):通过引入对抗平衡的测试时适应模块(AB-TTA),显著提高了Q1值,并同时增强了ηnp和ηtb的性能。

、具身智能体 

论文:Embodied Multi-Modal Agent trained by an LLM from a Parallel TextWorld

方法:论文提出了一种名为EMMA(Embodied Multi-Modal Agent)的方法,通过跨模态交互模仿学习,将一个在文本世界中表现出色的大型语言模型(LLM)专家的知识迁移到一个在视觉世界中的具身多模态代理上。

创新点:

  • 通过回顾反思,EMMA在时间上得到了改进。通过比较EMMA和去掉回顾机制的EMMA的平均成功率,作者发现EMMA的回顾机制显著优于没有回顾机制的EMMA。

  • 通过在特定噪声率下对EMMA和SOTA LLM代理(Reflexion)进行比较,作者发现随着噪声率的增加,EMMA的性能仍然比Reflexion更具鲁棒性。

 五、虚拟到现实 

论文:GenH2R: Learning Generalizable Human-to-Robot Handover via Scalable Simulation, Demonstration, and Imitation

方法:论文提出了GenH2R,一个用于学习通用的基于视觉的人机交互(Human-to-Robot, H2R)交接技能的框架。该框架通过可扩展的模拟环境GenH2R-Sim、自动化的演示生成方法和一种辅助预测的4D模仿学习方法,实现了对机器人接收人类以各种复杂轨迹递交的不同几何形状物体的能力的培训。

创新点:

  • GenH2R-Sim是一个新的仿真环境,包含了数百万个人与机器人交接的动画,用于支持一般化的H2R交接学习。

  • 文中介绍了一种适用于大规模演示生成的方法,可以自动生成适合学习的高质量演示。

  • 文中还提出了一种基于预测的4D模仿学习方法,用于将演示提炼为视觉-运动交接策略。

### 具身智能2024年的发展趋势和技术应用 #### 研究进展概述 具身智能技术在2024年的研究取得了显著成果,其发展不仅吸引了学术界的关注,还在产业界实现了广泛应用。最新的研究成果涵盖了多个维度的技术提升和理论探索[^1]。 #### 学术与行业交流 第三届AIGC中国开发者大会于2024年5月25日在昆仑巢举办,会议聚焦“AI Agent的国内应用现状及多模态结合具身智能的发展展望”。此次大会上,来自不同领域的专家深入讨论了大模型在国内各行业的具体应用场景及其未来发展潜力[^2]。 #### 创新技术平台 由北京人工智能通研院开发的“通境”(TongVerse)平台展示了强大的技术支持能力。“通境”能够处理复杂的机器人视觉-语言-运动联合解译任务,并在2024年的CRAIC人形机器人创新挑战赛上取得重要突破。该平台预计将在未来的多样化场景中提供全面的解决方案[^3]。 #### 计算机视觉的进步与局限 尽管计算机视觉在过去几年里感知层面的能力有了极大的提高,但在认知层面上仍然存在诸多挑战。当前的大规模视觉-语言模型(VLM)为这一领域注入了新的活力,推动了技术创新。然而,为了使具身机器人更好地理解和操作环境,仍需进一步加强三维理解能力和空间推理水平[^4]。 #### 商业化进程分析 就商业化进程而言,国际市场上的人形机器人公司预计会在2025年初达到一定的商业成熟度,即具备执行实际工作的能力。相比之下,国内市场虽然正处于快速融资阶段,但整体商业化步伐相对滞后,很大程度上依赖海外市场的成功经验作为参考依据[^5]。 ```python # 示例代码展示如何通过API调用获取最新具身智能数据 import requests def fetch_embodied_intelligence_data(api_url): response = requests.get(api_url) if response.status_code == 200: data = response.json() return data['trends'], data['applications'] else: raise Exception(f"Failed to retrieve data: {response.status_code}") api_endpoint = 'https://example.com/api/embodied-intelligence' try: trends, applications = fetch_embodied_intelligence_data(api_endpoint) print("Latest Trends:", trends) print("Applications Overview:", applications) except Exception as e: print(e) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凌峰的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值