具身智能的视觉-语言-动作模型综合综述论文

近期arXiv公开了关于具身智能(Embodied AI)中的视觉-语言-动作模型(Vision-Language-Action Models,简称VLAs)的综合综述论文。介绍了VLAs的概念,它们是为了处理多模态输入而设计的模型,包括视觉、语言和动作模态。这些模型对于具身AI至关重要,因为它们需要理解和执行指令、感知环境并生成适当的动作。

文章讨论了单模态模型的发展,包括计算机视觉、自然语言处理和强化学习中的里程碑模型。强调了多模态模型的出现,这些模型结合了单模态模型的进展,以处理如视觉问答、图像描述和语音识别等任务。

详细介绍了VLA模型的不同组件,包括预训练的视觉表示、动态学习、世界模型和控制策略。讨论了VLA模型的分类,包括基于预训练的模型、基于Transformer的模型和基于大型语言模型(LLM)的模型。探讨了高级任务规划器,这些规划器能够将长期任务分解为可执行的子任务。
在这里插入图片描述

虽然目前还没有专门针对VLAs的综述,但相关领域的现有综述为VLA研究提供了有价值的见解。提供了对新兴VLA模型的全面回顾,涵盖了架构、训练目标和机器人任务等多个方面。提出了一个包括预训练、控制策略和任务规划器三个主要组成部分的层次结构分类法。提供了训练和评估VLA模型所需的资源概述,包括最近引入的数据集和模拟器。
在这里插入图片描述

概述了当前的挑战和未来的机遇,如解决数据稀缺问题、提高机器人的灵活性、实现跨不同任务、

### 关于具身智能视觉感知建模的信息 #### 研究论文概述 具身智能(Embodied AI)的研究旨在使机器备理解并操作物理世界的能力。在这一领域内,视觉感知扮演着至关重要的角色,因为它提供了关于周围环境的关键信息。一篇综述文章探讨了从模拟器到体研究任务中的各种挑战和发展趋势[^1]。 #### 视觉感知建模的方法 为了构建有效的视觉感知模型,研究人员通常会考虑以下几个方面: - **多模态数据处理**:现代VLA(Visual-Language-Action)框架可以集成来自不同传感器的数据流,比如摄像头捕捉的画面以及麦克风录制的声音片段。通过这种方式,系统不仅能看到物体还能听到声音,从而更全面地解析场景上下文[^2]。 - **三维空间认知**:不同于传统的二维图像分析,先进的算法正在尝试利用深度相机或其他形式的空间测量工获取更加真实的立体视角。这种改进有助于提高对实际环境中对象位置及其相互关系的理解精度。 - **内部世界模型的创建**:模仿人类大脑的工作机制,某些高级别的AI解决方案试图先建立起一个虚拟的世界表示,在此基础上进行假设测试和未来情景推演。这种方法允许设备提前思考可能的结果,并据此调整行为策略。 #### 技术实现细节 当涉及到体的编程实践时,开发者可以选择多种途径来达成目标。例如,在MATLAB平台上开发基于视觉注意力的选择性聚焦功能就是一个不错的选择。该平台提供了一系列强大的函数库支持快速原型设计与实验验证工作。下面是一个简单的例子展示了如何使用MATLAB来进行基本的对象检测任务: ```matlab % 加载预训练网络 net = alexnet; % 读取图片文件 img = imread('example.jpg'); % 调整大小以适应输入层需求 inputSize = net.Layers(1).InputSize; resizedImg = imresize(img, inputSize); % 执行前向传播得到分类结果 labelScores = classify(net, resizedImg); predictedLabel = labelScores.label; ``` 这段代码实现了加载预先训练好的卷积神经网络(CNN),并对给定的一张照片执行识别操作。当然这只是冰山一角;真正的具身智能项目可能会涉及更为复杂的架构和技术栈组合。 #### 应用实例 目前,具身智能已经在多个行业找到了应用场景,特别是在那些需要高度自动化程度的任务当中。以下是几个典型的应用方向: - **智能家居助手**:这些装置可以通过内置摄像机观察房间布局变化自动调节照明强度或温度设置; - **无人驾驶汽车**:车辆依靠激光雷达(LiDAR)和其他类型的感应装备实时监测路况,确保安全行驶路径规划; - **工业机器人协作**:工厂里的机械臂学会识别人类同事的动作意图并与之协同完成产流程。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值