python图片的比例缩放、剪裁和下采样

重新缩放操作按给定的缩放因子调整图像的大小。 比例因子可以是单个浮点值,也可以是多个值-沿每个轴一个。

调整大小具有相同的目的,但是允许指定输出图像形状而不是缩放因子。

请注意,在对图像进行下采样时,调整大小和缩放比例应执行高斯平滑处理以避免混叠伪影。 请参阅这些函数的anti_aliasing和anti_aliasing_sigma参数。

降级的目的是使用整数因子对n维图像进行下采样,该整数因子使用大小因子的每个块的元素上的局部平均值作为函数参数给出。

 

 

import matplotlib.pyplot as plt

from skimage import data, color
from skimage.transform import rescale, resize, downscale_local_mean

image = color.rgb2gray(data.astronaut())

image_rescaled = rescale(image, 0.25, anti_aliasing=False)
image_resized = resize(image, (image.shape[0] // 4, image.shape[1] // 4),
                       anti_aliasing=True)
image_downscaled = downscale_local_mean(image, (4, 3))

fig, axes = plt.subplots(nrows=2, ncols=2)

ax = axes.ravel()

ax[0].imshow(image, cmap='gray')
ax[0].set_title("Original image")

ax[1].imshow(image_rescaled, cmap='gray')
ax[1].set_title("Rescaled image (aliasing)")

ax[2].imshow(image_resized, cmap='gray')
ax[2].set_title("Resized image (no aliasing)")

ax[3].imshow(image_downscaled, cmap='gray')
ax[3].set_title("Downscaled image (no aliasing)")

ax[0].set_xlim(0, 512)
ax[0].set_ylim(512, 0)
plt.tight_layout()
plt.show()

欢迎关注公众号:算法工程师的学习日志,获取算法工程师的学习资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值