2021-03-20 GPS抽稀之道格拉斯-普克(Douglas-Peuker)算法

36 篇文章 14 订阅

GPS抽稀之道格拉斯-普克(Douglas-Peuker)算法

道格拉斯-普克算法是我们常用的一种轨迹点的抽稀算法,抽稀出来的点可以尽可能的维持原先轨迹点的大体轮廓,剔除一些非必要的点。

 

道格拉斯-普克原理

假设在平面坐标系上有一条由N个坐标点组成的曲线,已设定一个阈值epsilon。

(1)首先,将起始点与结束点用直线连接, 再找出到该直线的距离最大,同时又大于阈值epsilon的点并记录下该点的位置(这里暂且称其为最大阈值点),如图所示:

图片

(2)接着,以该点为分界点,将整条曲线分割成两段(这里暂且称之为左曲线和右曲线),将这两段曲线想象成独立的曲线然后重复操作(1),找出两边的最大阈值点,如图所示:

图片

(3)最后,重复操作(2)(1)直至再也找不到最大阈值点为止,然后将所有最大阈值点按顺序连接起来便可以得到一条更简化的,更平滑的,与原曲线十分近似的曲线,如图所示:

图片

图片

图片

图片

 

具体思路

        对每一条曲线的首末点虚连一条直线,求所有点与直线的距离,并找出最大距离值dmax,用dmax与限差D相比;若dmax < D,这条曲线上的中间点所有舍去;若dmax ≥D,保留dmax 相应的坐标点,并以该点为界,把曲线分为两部分,对这两部分反复使用该方法。控制限差值的大小可以控制抽稀的粒度。

 

Matlab代码实现:

%% 主函数入口(在该函数界面下点击运行实验)
clc;clear;close all; 
points(:,1) = 5:5:300; %x值为1到60
points(:,2) = 10 + 3 * rand(60,1); %y为10加一个0到1的随机数
points(25:35,2) = 5 + 3 * rand(11,1); %其中第25到第35个点低一点
% =========================================================================
[r,c] = size(points);
A(1,1) = points(1,1); A(1,2) = points(1,2);
A(2,1) = points(r,1); A(2,2) = points(r,2);
Threshold = 3; %给定阈值
[A] = ARecursionFun(points,A,Threshold); % 递归
A = sortrows(A,1);
figure(1); %创建图层
plot(points(:,1),points(:,2),'-k'); %绘制原始折线
hold on; %保留当前图层的要素
plot(A(:,1),A(:,2),'*-r'); %在原图基础上绘制特征点
title(['阈值为:',num2str(Threshold)]);
% 输入两个相邻特征点之间的扫描线pointsTab,特征点表A(A是折线首尾两个端点)
% 输出补充新发现的特征点后的特征点表A
% 函数名称为ARecursionFun(一个递归函数)
function [A] = ARecursionFun(pointsTab,A,Threshold)
[r,~] = size(pointsTab); % 获取扫描线片段上点的个数
if r > 2 % 如果这条扫描线片段上点数大于2则执行操作
    Q1 = [pointsTab(1,1);pointsTab(1,2)]; % 起点坐标对的列向量表示(为了便于点到直线距离计算的表示方法)
    Q2 = [pointsTab(r,1);pointsTab(r,2)]; % 终点坐标对的列向量表示(作用同上)
    % 遍历这个扫描线,依次计算每个点到扫描线起点终点连线的距离==================
    for i = 1:1:r
        P = [pointsTab(i,1);pointsTab(i,2)]; % 当前点坐标的列向量表示
        d(i,1) = abs(det([Q2-Q1,P-Q1]))/norm(Q2-Q1); % 计算点到直线的距离
    end
    % 计算完毕,每个点到直线的距离存入列向量d中================================
    if max(d) > Threshold % 如果距离列向量中最大值大于阈值则进行下述操作
        ind = find(all(repmat(max(d),size(d,1),1)==d,2)); % 获取列向量中最大值对应的点的序号
        [rA,~] = size(A); % 获取当前特征点表A已存点的个数
        A(rA+1,1) = pointsTab(ind,1); % 将这个点作为特征点存储起来(x坐标)
        A(rA+1,2) = pointsTab(ind,2); % 将这个点作为特征点存储起来(y坐标)
        pointsTabb = pointsTab(1:ind,:); % 以刚才存储的特征点为界限,起点到该点建立新的片段扫描线
        A = ARecursionFun(pointsTabb,A,Threshold); % 函数自身调用进行递归,进一步获取片段内的特征点
        pointsTabe = pointsTab(ind:r,:); % 以刚才存储的特征点为界限,该点到终点建立新的片段扫描线
        A = ARecursionFun(pointsTabe,A,Threshold); % 函数自身调用进行递归,进一步获取片段内的特征点
    end
end

å¾ç

 

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Douglas-Peucker算法可以用C语言实现,以下是其中一个可能的实现: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> typedef struct { double x; double y; } Point; // 计算点p1和点p2之间的欧几里得距离 double distance(Point p1, Point p2) { double dx = p1.x - p2.x; double dy = p1.y - p2.y; return sqrt(dx*dx + dy*dy); } // 计算点p到线段(p1,p2)的距离 double perpendicularDistance(Point p, Point p1, Point p2) { double area = fabs((p2.x-p1.x)*(p1.y-p.y)-(p1.x-p.x)*(p2.y-p1.y)); double lineLength = distance(p1, p2); return area / lineLength; } // 递归调用Douglas-Peucker算法 void douglasPeucker(Point* points, int start, int end, double epsilon, int* keep) { // 如果只有两个点,直接保留 if (end - start == 1) { keep[start] = 1; keep[end] = 1; return; } // 找出距离直线最远的点 double maxDistance = 0; int maxIndex = 0; Point p1 = points[start]; Point p2 = points[end]; for (int i = start+1; i < end; i++) { double d = perpendicularDistance(points[i], p1, p2); if (d > maxDistance) { maxDistance = d; maxIndex = i; } } // 如果最远距离大于epsilon,则继续递归,否则保留 if (maxDistance > epsilon) { douglasPeucker(points, start, maxIndex, epsilon, keep); douglasPeucker(points, maxIndex, end, epsilon, keep); } else { for (int i = start; i <= end; i++) { keep[i] = 1; } } } // Douglas-Peucker算法的入口函数 void simplify(Point* points, int n, double epsilon, Point** result, int* m) { // 先分配一个足够大的数组保留结果 int* keep = (int*)malloc(n * sizeof(int)); // 递归调用Douglas-Peucker算法 douglasPeucker(points, 0, n-1, epsilon, keep); // 统计结果 *m = 0; for (int i = 0; i < n; i++) { if (keep[i]) { (*m)++; } } *result = (Point*)malloc((*m) * sizeof(Point)); int j = 0; for (int i = 0; i < n; i++) { if (keep[i]) { (*result)[j++] = points[i]; } } free(keep); } int main() { Point points[] = { {0, 0}, {1, 1}, {2, 0}, {3, 1}, {4, 0}, {5, 1}, {6, 0}, {7, 1}, {8, 0}, {9, 1} }; int n = sizeof(points) / sizeof(Point); Point* simplifiedPoints; int m; simplify(points, n, 0.5, &simplifiedPoints, &m); printf("Original points:\n"); for (int i = 0; i < n; i++) { printf("%.1f, %.1f\n", points[i].x, points[i].y); } printf("Simplified points:\n"); for (int i = 0; i < m; i++) { printf("%.1f, %.1f\n", simplifiedPoints[i].x, simplifiedPoints[i].y); } free(simplifiedPoints); return 0; } ``` 该实现中,首先定义了一个结构体 `Point` 表示二维空间中的一个点,然后实现了 `distance` 函数用于计算点与点之间的距离,以及 `perpendicularDistance` 函数用于计算点到线段的垂直距离。 接下来是Douglas-Peucker算法的核心部分,实现了一个 `douglasPeucker` 函数用于递归调用算法,并实现了一个 `simplify` 函数作为入口函数。输入参数为原始点数组 `points`,点数量 `n`,阈值 `epsilon`,输出参数为简化后的点数组 `result` 和点数量 `m`。算法先分配一个 `keep` 数组用于标记需要保留的点,然后调用 `douglasPeucker` 函数进行递归计算。最后统计保留的点数量并返回简化后的点数组即可。 在 `main` 函数中,我们定义了一个包含10个点的测试数组,并调用 `simplify` 函数进行简化,然后打印出原始点和简化后的点供查看。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值