matlab simulink基于BPPID控制的机械臂位置仿真

机械臂是一种复杂的系统,广泛应用于工业装配和安全防爆领域。其控制面临参数不确定性、未建模动态等挑战,导致模型不确定性。控制策略包括PID、自适应和鲁棒控制,但常与神经网络等融合以提升性能。本文探讨了不确定性分类、影响及控制方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、内容简介


611-可以交流、咨询、答疑

2、内容说明

机械臂是指高精度,多输入多输出、高度非线性、强耦合的复杂系统。因其独特的操作灵活性,已在工业装配、安全防爆等领域得到广泛应用。
机械臂是一个复杂系统,存在着参数摄动、外界干扰及未建模动态等不确定性。因而机械臂的建模模型也存在着不确定性,对于不同的任务,需要规划机械臂关节空间的运动轨迹,从而级联构成末端位姿

不确定性主要分为两种主要类型:结构(structured)不确定性和非结构(unstructured)不确定性,非结构不确定性主要是由于测量噪声、外界干扰及计算中的采样时滞和舍入误差等非被控对象自身因素所引起的不确定性。结构不确定性和建模模型本身有关,可分为
①参数不确定性 如负载质量、连杆质量、长度及连杆质心等参数未知或部分已知。
②未建模动态 高频未建模动态,如执行器动态或结构振动等;低频未建模动态,如动/静摩擦力等。
模型不确定性给机械臂轨迹跟踪的实现带来影响,同时部分控制算法受限于一定的不确定性。应用于机械臂控制系统的设计方法主要包括PID控制、自适应控制和鲁棒控制等,然而由于它们自身所存在的缺陷,促使其与神经网络、模糊控制等算法相结合,一些新的控制方法也在涌现,很多算法是彼此结合在一起的。

PID控制

 BPPID

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值