求臻医学招募FGFR基因异常的晚期实体瘤患者

c2e9d98554d440a2be3d11a02d3c3c6f.jpeg

作为专注肿瘤精准医疗领域的国家高新技术企业,求臻医学拥有一套成熟的线下线上患者招募体系,涵盖了完善的内部管理制度、标准化招募流程,能够快速并准确的筛选符合药企临床实验的目标患者,全程仅需1~2周。目前FGFR基因异常的晚期实体瘤患者正在招募中。


项目介绍

试验题目:“一项在晚期实体肿瘤受试者中评估FGFR抑制剂ET0111单药安全性、药代动力学和初步疗效的I期开放性、多中心、剂量探索研究”

试验分期:I期临床试验

适应症:晚期实体瘤

药物名称:ET0111胶囊


主要入选标准

1. 年龄≥18周岁,男女不限

2. 基因检测报告显示有FGF/FGFR 基因异常,如 FGFR1, 2, 3, 4 及 FGF19 基因异常,包含但不限于突变,扩增,融合,重排及过表达等

3. 经组织学或细胞学确认的晚期实体肿瘤,经标准治疗失败或无标准治疗方案

4. 有可测量的肿瘤病灶

5. 有良好的体能和器官功能


主要排除标准

1. 既往接受过其他不可逆的泛FGFR 抑制剂治疗

2. 其他研究者认为可能影响对方案的依从性或不适合参加本研究的情况


相关信息

启动时间:2022年

组长单位中国人民解放军总医院

主要研究者徐建明 教授

参研中心/开展医院:

803afa2d474bbc09532731e626f9dd41.jpeg

* 项目查询:国家食品药品监督管理总局药品审评中心临床试验登记与信息公示平台http://www.chinadrugtrials.org.cn


如您身边有合适的患者意向入组,请联系求臻医学药企合作部:张先生 15011165799



求臻医学药企合作服务 

求臻医学专注肿瘤多基因检测,以新一代基因测序和先进信息挖掘技术为基础,为药企提供专业化解决方案。现已与国内外10余家药企就科研/学术合作、临床试验检测、伴随诊断、患者招募、多组学人工智能ChosenMIP大数据服务等展开深入合作,通过将基因检测和人工智能技术深度应用于真实世界研究项目,不断探索发现中国人肿瘤基线及特异的生物标志物,助力抗肿瘤药物的研发,为药企临床前研究、转化医学研究、临床开发和诊断产品开发提供全流程的专业服务。目前,求臻医学构建了遍布全国范围的营销网络,服务于国内500余家顶级医疗机构,为肿瘤患者提供精准诊疗一体化检测服务/为患者提供精准的肿瘤基因检测服务。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值