前言
看到这篇文章的各位想必对 Hugging Face 都有所耳闻了。作为 AI 时代的开源重要阵地,我们可以在这里找到特别多的一手开源模型,直接部署到本机进行调试。
但是究竟怎么开始,尤其是对于非常多没有接触过 AI 模型的同学来说,从直接使用现成的 ChatGPT 到部署一个本地 AI 模型将是一个非常大的跨度,很多人直接就望而却步了,也很多人卡在实现第一个本地部署模型上,这里面的原因包括但不限于代码部署、下载模型失败等等。
笔者也经历过这个阶段,我一直坚信的一句话是,从0到1的突破更多是克服恐惧,从1到100更多是持续的坚持。所以今天我将会从自己的经验出发,介绍如何从零开始在本地部署一个 Hugging Face 开源模型,并使用它。
寻找你想要的模型
首先,你要想清楚自己的目标,比如我这里的目标是想要看一下别人的AI生成文本的检测模型。那么我们就进入 Hugging Face 的官网。
我们选择其中一个进入模型的介绍页面,比如我这里选择了 yongchao/ai_text_detector
在这个模型下面会有一些介绍,比如训练的基础模型是 BERT,训练的轮次,数据等等。
红框标记的地方可以复制后续我们要下载模型所用的参数。
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
生成你的 Token
通过 Python 代码下载模型时,Hugging Face 需要校验你的 Token 信息。我们进入设置页面生成一个只允许下载公共仓库的 Token 即可。
完成上面的步骤后,第三个页面的底部有个完成按钮,点击后,你会生成一个 Token,记得保存到本地,后续需要用到这个 Token 用以下载模型。
下载必要的包和修改下载源
以笔者这个模型为例,需要用到的包有以下几个
transformers==4.35.0
huggingface-hub==0.17.3
torch==2.1.0+cu118
torch
这个我使用了 CUDA 11.8 版本,如果你没有 CUDA 显卡的话,只需要安装前面的 2.1.0 即可。
这几个包直接下载的话,可能会碰到网络不通的情况,可以尝试使用国内的源进行下载
pip install transformers==4.35.0 -i https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
配置国内源有好几种办法,可以自己搜索或者使用大模型查询。
同样的,huggingface-hub
的默认源也是海外的,一样可以使用国内镜像源来替换,这样可以防止后续下载速度过慢,甚至直接报无法连接的错误。
与 Python 包的下载不一样,这里要通过配置环境变量的方式去修改。
vim ~/.bashrc
export HF_ENDPOINT=https://hf-mirror.com
:wq
source ~/.bashrc
Mac 或 Linux 的读者可以使用上面的命令,修改配置文件后生效使用。
Windows 的用户可以在环境配置里生成新的环境变量。
代码
这部分其实也是没入门觉得难,入门了觉得很简单,废话不多说,直接上代码。
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from huggingface_hub.hf_api import HfFolder
text = 'The sunlight streamed through the tall windows, casting a warm glow on the polished wooden table where I sat'
HfFolder.save_token('刚刚你生成的Token复制到这里')
model = AutoModelForSequenceClassification.from_pretrained("yongchao/ai_text_detector", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("yongchao/ai_text_detector", use_auth_token=True)
inputs = tokenizer(sentence, return_tensors="pt")
outputs = model(**inputs)
print(outputs)
运行这个脚本,首先会去检测模型是否已经下载好了,如果没有,就会去刚刚修改的镜像HF网站下载该模型。下载好之后就会执行代码,并得到结果。
# 模型执行结果
SequenceClassifierOutput(loss=None, logits=tensor([[ 0.7496, -0.8134]], grad_fn=<AddmmBackward0>), hidden_states=None, attentions=None)
很好,模型执行成功了~但是结果怎么看呢?
像上面的模型结果中 logits=tensor([[ 0.7496, -0.8134]]
只有两个结果,不难猜测应该一个是 AI 结果的分数,一个是人类结果的分数。但是究竟哪个是呢?并且这个结果很可能不止2个,会有4/5/6 甚至几十个。
这里我们就要回到 Hugging Face 了。
找到上面搜到的模型的页面,切换到 File and versions,然后点击 config.json 文件,里面藏了一个标签信息。
参照这个config.json中的信息,可以确认 0.7496 是 AI 的分数,而 -0.8134 就是人类的分数,最终结果是这句话被判断为是 AI 生成的。
总结
0到1的突破,是面对恐惧的突破。
根据上面的步骤操作,相信应该可以很顺利的跑起来一个 AI 模型。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓