yolov8目标跟踪与行人车辆计数+YOLOv8 Object Detection with DeepSORT Tracking(ID + Trails)

YOLOv8目标检测与DeepSORT跟踪技术简介

在计算机视觉领域,目标检测和跟踪是两个至关重要的任务。目标检测旨在识别图像或视频中的特定对象,并确定它们的位置;而目标跟踪则是在连续的帧之间保持对这些对象的身份和位置的一致性跟踪。本文将详细介绍YOLOv8作为先进的目标检测算法,以及DeepSORT(Deep Learning Simple Online and Realtime Tracking)作为有效的多目标跟踪方法,二者结合使用如何实现高精度的目标检测与跟踪,特别强调了ID分配及轨迹绘制的功能。

一、YOLOv8: 目标检测的新里程碑

YOLO (You Only Look Once) 是一种实时物体检测系统,自首次提出以来便以其速度和准确性著称。随着版本迭代至YOLOv8,该系列模型不仅继承了前代的优势,还在多个方面进行了优化升级。YOLOv8采用了更高效的网络结构设计、改进的数据增强技术和训练策略,从而在保证快速推理的同时显著提升了检测性能。它支持多种尺寸的输入图片,适用于不同场景下的应用需求。此外,YOLOv8还提供了更加友好的用户界面和开发工具,使得研究人员和开发者能够更容易地进行模型定制与部署。

二、DeepSORT: 在线多目标跟踪器

DeepSORT是一种基于深度学习的在线多目标跟踪算法,它通过结合外观信息与运动预测来提高跟踪效果。与传统的SORT算法相比,DeepSORT引入了一个深度神经网络用于提取目标特征向量,这有助于解决由于遮挡等原因导致的目标外观变化问题。其核心思想包括:

  • 卡尔曼滤波器:用于估计每个目标的状态(如位置、速度等),并预测下一时刻的位置。
  • 匈牙利算法:用来解决数据关联问题,即决定哪些检测结果属于哪个已知目标。
  • 马氏距离:衡量新检测到的目标与现有跟踪序列之间的相似度。
  • 级联匹配策略:首先尝试根据外观特征匹配,如果失败再考虑仅基于空间位置的信息。
    在这里插入图片描述
三、YOLOv8与DeepSORT的融合应用

当YOLOv8与DeepSORT相结合时,可以构建一个强大的视频分析系统,能够同时完成高质量的对象检测与长时间稳定跟踪。具体流程如下:

  1. 初始化阶段:加载预训练好的YOLOv8模型,设定好相关参数。
  2. 帧处理循环
    • 使用YOLOv8对每一帧图像执行目标检测,获取边界框坐标及其类别标签。
    • 将检测结果送入DeepSORT模块,进行目标匹配与更新操作。
    • 对于新出现的目标,分配唯一ID,并开始记录其轨迹。
    • 更新所有跟踪目标的状态信息,包括最新位置、速度等。
  3. 输出结果:可视化显示带有ID标注的目标框及历史轨迹。

前往克隆文件夹并安装依赖

在这里插入图片描述

首先,你需要进入你已经从GitHub或其他源代码托管服务克隆下来的YOLOv8-DeepSORT-Object-Tracking项目文件夹。打开终端或命令行界面,然后输入以下命令以导航到项目目录:

cd YOLOv8

接下来,安装项目所需的依赖项。为了安装开发环境下的所有依赖,运行:

pip install -e '.[dev]'

这条命令会根据项目的setup.py文件安装所有必需的包,包括开发时需要用到的额外库。

设置工作目录

然后切换到YOLOv8的检测脚本所在的目录:

cd ultralytics/yolo/v8/detect

下载DeepSORT文件

访问以下链接下载DeepSORT相关的文件:

  • [DeepSORT 文件夹](https://drive.google.com/drive/folders/1kna8eWGrSfza

从Google Drive下载完DeepSORT的ZIP压缩文件后,将其解压并将deep_sort_pytorch文件夹放置在yolo/v8/detect目录下。
在这里插入图片描述

下载示例视频

接着,下载用于测试的示例视频。使用gdown工具从Google Drive下载视频文件。如果你还没有安装gdown,可以通过pip安装它:

pip install gdown

之后,下载视频文件:

gdown "https://drive.google.com/uc?id=1rjBn8Fl1E_9d0EMVtL24S9aNQOJAveR5&confirm=t"

这将会把视频文件保存到你的当前工作目录中。

运行YOLOv8目标检测+跟踪代码

现在你可以运行带有DeepSORT跟踪功能的YOLOv8目标检测程序了。使用以下命令来启动程序,并指定要使用的模型(这里是yolov8l.pt)和视频源(test3.mp4)。同时设置show=True来实时查看结果:

python predict.py model=yolov8l.pt source="test3.mp4" show=True

下载更新后的predict.py文件以支持车辆计数

若要启用车辆计数功能,请从以下链接下载更新版的predict.py文件,并替换原有的文件:

确保将新的predict.py文件放在ultralytics/yolo/v8/detect目录内。

运行YOLOv8目标检测+跟踪+车辆计数代码

最后,再次运行修改后的predict.py脚本来执行目标检测、跟踪以及车辆计数:

python predict.py model=yolov8l.pt source="test3.mp4" show=True

结果展示

运行上述命令后,你将能够在屏幕上看到车辆检测、跟踪的结果,同时程序还会统计并显示视频中出现的车辆总数。

请注意,根据你的具体需求和环境配置,可能需要调整某些参数或路径设置。确保所有的路径都是正确的,并且所有必要的文件都已经被正确地放置到了指定的位置。
这种组合方案特别适用于需要长时间监控同一场景的应用场合,比如智能安防、自动驾驶等领域。通过为每个检测到的目标分配唯一的标识符,并持续追踪其移动路径,可以有效提升系统的智能化水平和服务质量。

四、ID分配与轨迹绘制的重要性
  • ID分配:确保即使目标离开视野后再次进入也能被正确识别,这对于维护整个跟踪过程的一致性和准确性至关重要。
  • 轨迹绘制:不仅可以帮助理解目标的行为模式,还能辅助进行行为分析、异常检测等工作。例如,在交通管理中,通过对车辆行驶路线的分析,可以发现潜在的安全隐患点。
五、总结

综上所述,YOLOv8与DeepSORT的联合使用提供了一种高效且可靠的方法来实现复杂环境下的目标检测与跟踪任务。它们各自的优势互补,共同构成了一个强大且灵活的视觉分析平台。随着人工智能技术的发展,我们期待看到更多创新性的应用场景诞生,进一步推动相关领域的进步与发展。

### YOLOv8连续处理的技术实现 #### 加载模型初始化设置 为了在视频流或其他连续源上应用YOLOv8进行对象检测,首先需要加载预训练好的YOLOv8模型。通过`ultralytics`库可以方便地完成这一过程。 ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 使用小型版本的YOLOv8作为例子 ``` 此代码片段展示了如何从`ultralytics`库中导入YOLO类并实例化一个特定权重文件对应的YOLOv8模型[^2]。 #### 处理每一图像 对于每一个输入,都需要调用模型来进行预测。考虑到实时性能的要求,在实际部署时通常会对网络传输延迟、GPU加速等因素做适当调整。 ```python import cv2 cap = cv2.VideoCapture(0) # 打开摄像头获取实时视频流 while cap.isOpened(): ret, frame = cap.read() if not ret: break results = model(frame) # 对当前执行推理操作 annotated_frame = results[0].plot() # 可视化结果到原图上 cv2.imshow("YOLOv8 Detection", annotated_frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 上述脚本实现了打开默认摄像设备读取视频流的功能,并逐传递给YOLOv8模型以获得检测结果;最后将带有标注框的结果显示出来。 #### 数据关联跟踪算法集成 当涉及到多之间的物体持续识别时,则需引入额外的数据关联机制来维持同一目标的身份一致性。常用的方法包括但不限于卡尔曼滤波器(Kalman Filter),匈牙利匹配(Hungarian Algorithm)以及SORT (Simple Online and Realtime Tracking)。 例如,可以通过继承或扩展现有的跟踪框架(如DeepSort),将其YOLOv8相结合,从而实现在复杂场景下的稳定跟踪效果: ```python from deep_sort_realtime.deepsort_tracker import DeepSort tracker = DeepSort(max_age=30, n_init=2) detections = [] for result in results.xyxy[0]: bbox = result[:4] conf = result[4] cls = int(result[5]) detections.append(Detection(bbox=bbox.cpu().numpy(), confidence=float(conf), class_id=int(cls))) tracks = tracker.update_tracks(detections, frame=frame) ``` 这段代码说明了怎样利用DeepSort工具包中的`DeepSort`类创建一个跟踪器对象,并基于每产生的边界框信息更新轨迹列表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值