基于YOLO-DeepSort/ByteTrack的PyQt智能视觉分析系统
系统概述
uByteTrack-PyQt-GUI 是一个集成了多模态AI视觉分析的图形化应用程序,该系统采用PyQt框架构建用户界面,结合Ultralytics YOLO系列模型实现高效的物体检测与追踪功能。支持从多种输入源(包括本地文件、实时摄像头、网络视频流)进行以下AI视觉任务处理:
- 高精度物体检测与追踪
- 实时人体姿态估计与追踪
- 实例分割分析
- 有向边界框检测(OBB)
核心技术架构
1. 模型支持
系统兼容最新YOLO系列模型,包括:
- YOLOv11系列:nano(n)、small(s)、medium(m)、large(l)、xlarge(x)五种规格
- YOLOv8系列:涵盖从轻量级(nano)到超大模型(x)全系列
所有模型均以优化后的ONNX格式运行,确保跨平台兼容性和推理效率
2. 多目标追踪引擎
集成两大先进追踪算法:
- DeepSort:基于深度外观特征的强关联追踪算法
- ByteTrack:通过低置信度检测框再利用实现高召回率追踪
3. 多源输入支持
- 本地文件:支持JPEG/PNG等图片格式及MP4/AVI等视频格式
- 实时摄像源:兼容USB摄像头、网络摄像头等设备
- 网络视频流:支持RTSP/RTMP等流媒体协议
安装指南
基础环境配置
推荐使用Python 3.8+环境,提供两种安装方式:
pip安装方案
pip install -r requirements.txt
Conda环境方案
conda env create -f environment.yml
conda activate yolo_gui
模型权重部署
执行权重下载脚本自动获取预训练模型:
python download_weights.py
下载的模型权重将保存在weights/
目录下,包含:
- 物体检测模型(yolov8n.pt -> yolov8x.pt)
- 姿态估计模型(yolov8n-pose.pt)
- 分割模型(yolov8n-seg.pt)
系统运行
启动图形化主界面:
python main.py
功能扩展说明
1. 高级分析模块
- 实时性能监控面板:显示FPS、显存占用等硬件指标
- 自定义ROI区域:支持用户划定重点监测区域
- 报警触发机制:可配置越界检测、滞留报警等智能规则
2. 数据处理能力
- 批量处理模式:支持文件夹批量导入处理
- 结果导出功能:生成包含检测框坐标的JSON/CSV报告
- 视频合成输出:保存带分析标注的结果视频
3. 用户界面特性
- 多视图布局:支持原始画面/分析结果同屏对比
- 交互式控制:提供模型置信度阈值、追踪参数等实时调节滑块
- 主题定制:内置明亮/暗黑多套UI主题
典型应用场景
- 智能安防监控:人员/车辆识别统计
- 工业质检:缺陷产品自动筛查
- 交通管理:违章行为自动抓拍
- 零售分析:顾客行为热力图生成
- 医疗辅助:康复训练动作标准化评估
技术优势
- 模型轻量化:最小模型仅4MB(yolov8n),可在边缘设备部署
- 多线程架构:独立处理视频解码、AI推理、UI渲染线程
- 硬件加速:自动调用CUDA/TensorRT进行推理加速
- 跨平台支持:兼容Windows/Linux/macOS操作系统
该系统将持续更新,后续版本计划增加ReID重识别、3D姿态估计等进阶功能,为用户提供更强大的视觉分析工具。