人群密度估计之CrowdNet

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_14845119/article/details/68946693

该方法是目前为止最新的一篇进行人群密度估计的论文,CrowdNet: A Deep Convolutional Network for DenseCrowd Counting。简单的说,就是通过提取待检测图片的特征图(能量图,密度图)来进行积分,从而做出人数的估计。如果是传统的机器学习方法,无非就是堆一些不同核的高斯滤波器,然后得出最后的特征图,但是这样的手工滤波器,可能会将图片中所有的ROI都检测出来。而采用深度学习的方法,可以让网络自己学出一些参数,只检测人群的。

         论文的思想还是进行了网络的融合,融合的前提是2个网络的性能都不差,通过2个3*3和5*5的卷积核的融合,使得最终的结果比单个网络更好。

因为网络的设计为全卷积层,因此,在测试阶段支持各种尺度的图片的检测。

 

这种网络的训练一般有3种方法

1,自己撸一个data数据层。在caffe源码中实现原始图片和密度图向blob的传递。可以参考,http://blog.csdn.net/seven_first/article/details/52598810

2,自己使用matlab生成密度图,做成LMDB,输入的时候,分别读取data和label,这里需要注意,绝对不要使用shuffle,因为data和label需要一一对应

3,还是自己生成密度图,然后做成hdf5,这个好处就是支持double类型的密度图,感觉精度会更好点。

 

复现效果图:

 

 

model:http://download.csdn.net/detail/qq_14845119/9806170

 

链接:https://github.com/davideverona/deep-crowd-counting_crowdnet

展开阅读全文

没有更多推荐了,返回首页