GPT给出:
AX=XB 方程可以被视为一种矩阵方程,其中 A 和 B 是已知的矩阵,
X 是我们需要求解的矩阵。对于这种方程,通常可以通过将矩阵方程转化为线性方程组来求解。
下面是一个用 C++ 实现的求解
AX=XB 方程的代码示例。我们将使用 Eigen 库来处理矩阵运算。Eigen 是一个高效的 C++ 数值计算库,适用于矩阵和线性代数计算。
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
// Function to solve AX = XB
Matrix4d solveMatrixEquation(const Matrix4d& A, const Matrix4d& B) {
// Convert AX = XB into a vectorized form
// Vec(A) is a vector of all elements of matrix A in column-major order
// Vec(X) is a vector of all elements of matrix X in column-major order
// Vec(B) is a vector of all elements of matrix B in column-major order
// Reshape matrices into vectors
Matrix<double, 16, 16> K;
Matrix<double, 16, 16> M;
Matrix<double, 16, 1> V;
Matrix<double, 16, 1> X_vec;
// Construct the K matrix
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
// Fill the K matrix
K.block<4, 4>(4 * i, 4 * j) = A * Matrix<double, 4, 4>::Identity();
}
}
// Construct the M matrix
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
// Fill the M matrix
M.block<4, 4>(4 * i, 4 * j) = Matrix<double, 4, 4>::Identity() * B;
}
}
// Construct the V vector
for (int i = 0; i < 4; ++i) {
V.block<4, 1>(4 * i, 0) = Matrix<double, 4, 1>::Zero();
}
// Solve the linear system K * X_vec = V
X_vec = K.colPivHouseholderQr().solve(V);
// Reshape the result vector back to a matrix
Matrix4d X;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
X(i, j) = X_vec(i + 4 * j, 0);
}
}
return X;
}
int main() {
// Define matrices A and B
Matrix4d A;
Matrix4d B;
// Example matrices, you can set these to any 4x4 matrices
A << 1, 0, 0, 0,
0, 2, 0, 0,
0, 0, 3, 0,
0, 0, 0, 4;
B << 4, 0, 0, 0,
0, 3, 0, 0,
0, 0, 2, 0,
0, 0, 0, 1;
// Solve AX = XB
Matrix4d X = solveMatrixEquation(A, B);
// Print the result
cout << "Matrix X:" << endl << X << endl;
return 0;
}
说明
矩阵变换:
K 和 M 是线性系统中的矩阵。通过构建 K 和 M,我们将矩阵方程转换为线性方程组的标准形式。
V 是一个用于存储右侧常数的向量,初始化为零。
矩阵求解:
使用 colPivHouseholderQr() 方法来解线性方程组。这个方法是 Eigen 库中的一种求解线性方程组的方式。
结果重组:
将解向量 X_vec 转换回 4x4 矩阵 X。
相机在手上:求末端执行器到深度相机到变换矩阵Te2c
- 相机摆好一个位置后,得到这一帧图像中所有棋盘格的角点,并可以得出这些角点在棋盘格坐标系下的坐标,也可以得到这些角点在相机坐标系下的坐标,就可以用pcl的svd计算出相机到棋盘格坐标系的变换矩阵Tc2o(c:camera,o:object)
- 摆第一次相机位置时得到第一个Tc2o_1,摆第二次相机的位置时得到第二个Tc2o_2
- 机械臂坐标系base到末端执行的变换矩阵也是已知的Tb2e(b:base,e:end),即是末端执行器在base坐标系的坐标值用4x4矩阵表示
- 摆第一次相机位置时得到第一个Tb2e_1,摆第二次相机的位置时得到第二个Tb2e_2
- 两次调整相机的位置后标定板坐标系与base坐标系是没有变化的。末端执行器到相机的相对位置也是没有变的,即Te2c
- 第一次相机的位置得出一个base到标定板坐标系的变换矩阵Tb2o_1=Tb2e_1 * Te2c * Tc2o_1
- 第二次相机的位置得出一个base到标定板坐标系的变换矩阵Tb2o_2=Tb2e_2 * Te2c * Tc2o_2
- Tb2e_1 * Te2c * Tc2o_1=Tb2e_2 * Te2c * Tc2o_2 得到A * X=X * B矩阵方程,求出X即是Te2c
- 可以多摆几次多次求解
相机不在手上: 求base到相机坐标系的变换矩阵Tb2c
1, 方法与相机在手上的类似,将棋盘格夹在末端执行器上,用的等式为多次摆放末端执行器到标定板的变换矩阵是一样的