了解大模型 RAG (Retrieval-Augmented Generation):大模型外挂知识库 (检索增强技术)

本心、输入输出、结果

了解大模型 RAG (Retrieval-Augmented Generation):大模型外挂知识库 (检索增强技术)


编辑:简简单单 Online zuozuo
地址:https://blog.csdn.net/qq_15071263

个人简介 : 简简单单Online zuozuo,目前主要从事 Java 相关工作,商业方向为 B、G 端,主要使用Java、Python 进行日常开发,喜欢探索各个方面的内容,对很多的方向、内容感兴趣 :目前对 AIGC、云计算、物联网方向感兴趣

未闻万里蓬莱,而窥先圣遗智。故,以此生筑梦,奔而逐之;以泰山之伟,攀而登之;以静雅素心,处世为人。

欢迎有兴趣的朋友相互交流,共同成长。微信: tja6288 商务合作/资料获取/技术交流


如果觉得本文对你有帮助,欢迎点赞、收藏、评论

前言

了解大模型 RAG (Retrieval-Augmented Generation):大模型外挂知识库 (检索增强技术)

为了弥补通用的预训练大模型在某些专业领域的短板、或者特别强化大模型在某个细分场景下的能力,我们使用 RAG 外挂知识库来增强大模型的能力

在这里插入图片描述

什么是检索增强技术 RAG (Retrieval-Augmented Generation)

检索增强生成(RAG,Retrieval-Augmented Generation)是一种新型AI模型,集检索和生成于一体。基于Transformer架构,RAG能够实现高质量的文本生成和检索,通过将检索模型和生成模型结合在一起,提高了生成内容的相关性和质量。

RAG的工作原理是,首先由用户提出问题,然后检索器根据问题从知识库中检索相关信息。生成器再根据检索到的信息生成答案。在这个过程中,RAG通过综合考虑生成和检索过程,实现了更准确的知识检索和答案生成。相比传统方法,RAG具有更高的准确率。

RAG具有高效性、准确性、灵活性和可扩展性等优点,可以应用于知识问答、搜索引擎优化、自然语言处理等领域。特别是在知识问答领域,RAG展现出了巨大的潜力。通过结合自然语言处理技术和知识图谱技术,RAG能够实现更高效、更准确的知识问答,极大地提升用户体验和满意度。

检索增强生成(RAG)是一种将检索和生成相结合的AI模型,具有广泛的应用前景和潜力。

在这里插入图片描述

检索增强技术 RAG (Retrieval-Augmented Generation)可以用于构建特定领域的大模型

检索增强技术 RAG (Retrieval-Augmented Generation) 需要解决在特定领域关键词词性的“幻觉”问题

构建特定领域的大模型RAG(Retrieval-Augmented Generation)需要进行一系列步骤,以下是一些建议的步骤和注意事项:

  1. 数据收集与预处理:首先,收集特定领域的大量数据,包括文本、图像、音频等。这些数据可以是公开的,也可以是通过合作伙伴或专业渠道获得的。接着,对数据进行预处理,包括清洗、标注、分类等操作,以便模型能够更好地理解和处理这些数据。
  2. 模型架构设计:根据特定领域的需求和特点,设计适合该领域的RAG模型架构。可以考虑使用Transformer等先进的深度学习架构作为基础,并结合领域知识对模型进行定制和优化。
  3. 知识图谱构建:为了支持高效的检索和生成,需要构建一个特定领域的知识图谱。知识图谱可以包含实体、关系、属性等信息,用于表示领域内的概念和关联。可以使用自动抽取或人工编辑的方式来构建知识图谱,并确保其质量和完整性。
  4. 训练与优化:使用收集到的数据和设计好的模型架构进行训练,优化模型的参数和结构。可以使用各种训练技巧和策略,如预训练、微调、正则化等,来提高模型的性能和泛化能力。
  5. 评估与调试:在训练过程中,需要定期评估模型的性能,包括准确率、召回率、F1值等指标。通过与其他基准模型进行对比和分析,找出模型的优点和不足,并进行相应的调试和改进。
  6. 部署与应用:将训练好的RAG模型部署到实际应用场景中,如知识问答系统、搜索引擎等。根据实际应用的需求和反馈,对模型进行持续优化和更新,提高其在实际应用中的效果和用户体验。
  7. 持续学习与更新:为了保持模型的时效性和准确性,需要定期更新和优化模型。可以通过收集新的数据、改进模型架构、引入新的技术等方法来实现模型的持续学习和更新。

通过以上步骤和注意事项,可以构建特定领域的大模型RAG(Retrieval-Augmented Generation),并在实际应用中发挥重要作用。

在这里插入图片描述

除了 RAG 还有其它的模式吗

类似于 Web 里面的 MVC 一样,目前在LLM开发领域,有RAG,MRKL,Re-Act,Plan-Execute等模式

在这里插入图片描述

关键词

  • 向量搜索
  • RAG (Retrieval-Augmented Generation)
  • 检索增强技术

在这里插入图片描述

花有重开日,人无再少年

在这个充满困难和挑战的时期内,我们依然应该保持积极向上,放下遥不可及的欲望,平凡的普通人也可以成就自己的小梦想

在这个充满变化和无限可能的世界里,每一天都是新的开始。让我们拥抱今天,以积极乐观的心态去面对生活的挑战和机遇。

无论我们遇到什么困难,都要相信自己的力量和智慧,勇敢地迎接挑战。因为每一次的克服和超越,都将使我们的生命更加丰富多彩。

我们要学会欣赏生活中的美好事物,用感恩的心去珍惜所拥有的一切。这样,我们就会发现,快乐其实就在我们的身边,时时刻刻陪伴着我们。

让我们保持对未来的信心和热情,勇敢地追求自己的梦想。无论路途多么艰辛,只要我们坚持不懈,终将实现自己的目标。

让我们一起相信,只要我们心中充满阳光,就没有什么能够阻挡我们前进的步伐。让我们用积极乐观的心态,书写属于我们的精彩人生!

实践是检验真理的唯一标准

✅ 🥶 😎 😟 😲 😰 😭 😓
🔔️ 😂 😅 😍 😘 😚 😜 🤢
👿 💀 👽 👾 😻 💕 💔 💯
💦 💤 🤝 🙍‍♂️ 🙍 🍊 🍉 🍏

感谢亲的点赞、收藏、评论,一键三连支持,谢谢

在这里插入图片描述

### RAG检索增强生成)技术概述 #### 定义与目标 检索增强生成 (Retrieval-Augmented Generation, RAG) 是一种优化大型语言模型输出的方法,该方法使模型可以在生成响应前引用训练数据源之外的权威知识库[^1]。此过程旨在提高模型对于特定查询或任务的理解能力,尤其是在涉及广泛背景知识的需求下。 #### 架构特点 RAG 结合了检索技术和生成技术的优势,形成了一种新型的人工智能模型架构。具体来说,这类模型会从庞大的文档集合中动态检索相关信息以辅助文本生成,进而提升输出的质量和准确性[^2]。 #### 动态知识利用 值得注意的是,RAG 的一大特色就是可以实时访问最新的外部资料,这意味着即便是在未曾接受过专门训练的主题上,也能够给出深入浅出的回答。这得益于其可以从大规模的知识库中获取最新且相关的信息片段作为输入的一部分[^4]。 ### 工作原理详解 当接收到用户请求时,RAG 首先执行一次高效的检索操作,在预先构建好的数据库里查找最有可能帮助解决问题的内容摘要;随后基于这些找到的数据点来进行最终答案的合成工作。整个过程中既包含了对已有事实的学习又融入了即时获得的新见解,使得回复更加精准可靠[^3]。 ```python def rag_process(query): retrieved_docs = retrieve_relevant_documents(query) generated_response = generate_answer(retrieved_docs) return generated_response ``` 上述伪代码展示了简化版的 RAG 处理逻辑:接收查询 -> 检索相关文件 -> 生成回应。 ### 应用场景举例 由于具备强大的上下文理解和信息整合能力,RAG 特别适合应用于那些依赖于广博专业知识领域内的问答系统开发之中。例如医疗咨询平台、法律服务机器人以及教育辅导工具等都可以从中受益匪浅。此外,在企业内部知识管理方面也有着广阔的应用前景,比如客服中心自动化应答解决方案等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单OnlineZuozuo

感谢哥哥姐姐的打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值