2D偏置算法Offset


前言

偏置算法在CAD/CAM里面应用的非常广泛,对于3D,曲线类型非常丰富,3D的偏置基本上都是点偏置(对于Nurbs这类比较复杂的参数曲线,基本是采点偏置完后进行拟合,不过需要检测局部自交,然后进行修剪处理);但对于2D,就有些专门的偏置方法了,在CAM中,输入曲线一般会转成圆弧或线段,对于型腔边界曲线的偏置,除了MAT(中轴线),便只有单段单段的偏移、最后再进行修剪的方法了。


一、2D偏置

2D的偏置算法文献非常杂乱,细节各家有各家小处理,但最经典的还属Hansen这篇,作者先将偏移后的曲线进行打断(不一定要真打断,添加交点即可),借用一个状态量进行标记干涉情况,最后将无干涉的段进行收集起来,有点类似布尔算法中的隶属度。算法逻辑非常清晰,干涉检测可以用法向量、局部夹角(参考布尔算法中的隶属关系判断);算法还便于推广到开放轮廓中(虽然开放轮廓可以暴力的去处自相交的段)。在这里插入图片描述在这里插入图片描述
多重交点的情况在这里插入图片描述

在这里插入图片描述
当然,偏置的一些特殊情况也需要处理,如重交点,这点上国人进行完善了。
在这里插入图片描述
在这里插入图片描述
其他的一些偏置裁剪方法:
1.基于到原始轮廓最近距离的裁剪,小于偏置距离的都是干涉段(开放轮廓很好用)。
2.基于扫掠和布尔算法。(2d仿真一起做)
除此之外,Clipper库中计算卷绕数的方法也有用到在Offset中。

二、局部清角

对于算法生成的(如偏置)一些尖锐的刀路,实际加工是无法清角的,故需要进行局部清角,这方面的论文比较多,甚至摆线铣削在这方面也有优化。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、刀路连接

刀路连接的方式有很多,有基于区域树进行跳刀的,但我认为最经典的还是Sang C. Park这篇,数据结构上图的有点味道,整体效果和UG刀路展现出来的非常相似,而且文中还提到了区域偏置中的反向有效环问题,需要多一次跳刀。
在这里插入图片描述
在这里插入图片描述
右侧偏置后的小岛屿便是需要注意的情况。
在这里插入图片描述


三、方向平行刀路(“行切”,也算是另类的偏置)

行切算法看起来简单,诸多编程人员也觉得这个算法没什么难点,可事实是,要实现快速(各种加速方法,有扫描线算法、单调连等)、稳定、可靠的刀路还挺不容易的。平行刀路的中英论文很多很杂,但最经典,和商业软件刀路最相似的还属Park的方法:
将射线交点组织成图节点。然后往复填充节点,不断沿着轮廓收集路径,最后生成刀路,最麻烦的是节点间的连通性处理,每个人有每个人的做法,有人用点数的奇偶性,也可以参考轮廓法线(没有一阶连续性时特殊处理)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Held也有一些类似的做法:
在这里插入图片描述

在这里插入图片描述

<think>好的,用户想要了解如何使用C#编写一个多段线偏移的几何算法。首先,我需要明确多段线偏移的具体含义。偏移通常指平行偏移,即生成与原始多段线保持一定距离的新线段,这在CAD或图形处理中很常见。用户可能是在开发图形编辑工具或者需要路径规划,比如机械加工中的刀路偏移。 接下来,我需要考虑多段线的基本结构。多段线由一系列点组成,可能是直线段或包含圆弧。这里假设用户处理的是由直线段组成的多段线,因为圆弧处理更复杂。用户可能需要处理开放或闭合的多段线,比如折线或多边形。 然后,核心问题是计算每个线段的偏移,并处理连接处的过渡。直线段的偏移相对简单,可以通过计算法向量平移得到。但线段连接处(角点)的处理是关键,常见方法有斜接、圆角或倒角。用户可能需要不同的连接方式,比如斜接可能会有过长的尖角,需要限制长度,否则会采用其他方式。 接下来,我需要考虑算法步骤。首先,对每个线段生成偏移线段,然后处理相邻偏移线段的交点或连接。如果直接计算相邻偏移线的交点,可能会在锐角处出现不理想的结果,因此可能需要根据偏移方向和角度来判断如何处理连接。 另外,需要注意自相交的情况,偏移后的线段可能会交叉,这时候需要处理无效区域,比如使用裁剪算法。但用户可能暂时不需要这么复杂,所以先实现基本功能,再考虑优化。 然后,思考如何用C#实现。需要定义点类,可能使用System.Windows.Point或者自定义结构。计算偏移线段时,需要计算线段的单位法向量,乘以偏移距离,然后平移线段的两个端点。处理连接处时,计算两条相邻偏移线段的交点,或者添加圆弧或倒角。 现在,可能的难点在于计算法向量方向,确保所有线段偏移的方向一致(内部或外部)。例如,多段线的顶点顺序是顺时针还是逆时针会影响偏移方向,需要统一处理。 接下来,编写示例代码的结构。首先定义一个多段线的点列表,然后对每个线段生成偏移线段,收集所有偏移后的线段,然后处理连接处的交点,生成最终的偏移多段线。 测试案例也很重要,比如一个矩形偏移后应该变成更大的或更小的矩形,取决于方向。而凹多边形可能需要处理自相交问题,但基础版本可能暂不处理。 最后,需要提醒用户注意连接方式的选择,比如斜接限制、圆角半径等,以及处理异常情况,如零长度线段、重合点等。可能还需要优化性能,特别是在处理大量线段时。 总结步骤:1.计算各线段偏移;2.处理相邻偏移线段的连接;3.处理端点(开放多段线);4.返回新的多段线顶点集合。</think>以下是用C#实现多段线平行偏移算法的分步说明及示例代码: ```csharp // 二维点结构(可使用System.Windows.Point替代) public struct Vector2 { public double X; public double Y; public Vector2(double x, double y) => (X, Y) = (x, y); } public class PolylineOffset { // 计算开放多段线的平行偏移(斜接连接) public static List<Vector2> OffsetPolyline(List<Vector2> polyline, double distance) { List<Vector2> result = new List<Vector2>(); List<LineSegment> offsetSegments = new List<LineSegment>(); // 1. 生成所有线段的偏移线 for (int i = 0; i < polyline.Count - 1; i++) { var segment = new LineSegment(polyline[i], polyline[i + 1]); var offset = segment.GetParallelOffset(distance); offsetSegments.Add(offset); } // 2. 处理线段连接处 for (int i = 0; i < offsetSegments.Count; i++) { // 第一个线段的起点 if (i == 0) result.Add(offsetSegments[i].Start); // 与下一个线段的交点 if (i < offsetSegments.Count - 1) { if (LineSegment.FindIntersection(offsetSegments[i], offsetSegments[i + 1], out Vector2 intersection)) { result.Add(intersection); } } else // 最后一个线段的终点 { result.Add(offsetSegments[i].End); } } return result; } } // 线段结构(包含几何计算) public struct LineSegment { public Vector2 Start; public Vector2 End; public LineSegment(Vector2 start, Vector2 end) => (Start, End) = (start, end); // 获取平行偏移线段(需处理方向) public LineSegment GetParallelOffset(double distance) { Vector2 dir = new Vector2(End.X - Start.X, End.Y - Start.Y); double length = Math.Sqrt(dir.X * dir.X + dir.Y * dir.Y); // 计算单位法向量(顺时针方向) Vector2 normal = new Vector2(-dir.Y / length, dir.X / length); return new LineSegment( new Vector2(Start.X + normal.X * distance, Start.Y + normal.Y * distance), new Vector2(End.X + normal.X * distance, End.Y + normal.Y * distance)); } // 线段交点计算(省略实现细节) public static bool FindIntersection(LineSegment a, LineSegment b, out Vector2 point) { // 实现线段相交算法 // 此处需要添加实际的相交计算代码 throw new NotImplementedException(); } } ``` 实现要点说明: 1. **法向量计算**: - 通过旋转原始线段方向90度获取法向量 - 需统一偏移方向(示例使用顺时针方向) - 公式推导:原始向量(dirX, dirY) => 法向量(-dirY, dirX) 2. **连接处理**: - 使用斜接连接(Miter Join) - 计算相邻偏移线段的交点 - 需添加斜接限制避免尖刺过长 3. **特殊情况处理**: ```csharp // 在FindIntersection中需要处理的情况: - 线段平行无交点 - 线段延长线交点不在实际线段范围内 - 极小角度导致数值计算不稳定 ``` 4. **扩展建议**: - 闭合多边形处理:连接首尾线段 - 添加连接类型参数(圆角/斜接/倒角) - 添加自相交检测(Clipper库) - 处理圆弧段(需参数化曲线) 示例调用方式: ```csharp var polyline = new List<Vector2> { new Vector2(0, 0), new Vector2(10, 0), new Vector2(10, 5), new Vector2(5, 5) }; var offsetPath = PolylineOffset.OffsetPolyline(polyline, 1.0); ``` 注意事项: 1. 线段方向影响偏移方向(顺时针/逆时针) 2. 连接处计算需要处理除零错误 3. 建议使用浮点数容差比较(如1e-6) 4. 复杂图形建议使用成熟库(如Clipper2) 完整实现需要补充: - 线段相交算法 - 错误处理逻辑 - 性能优化(大量线段处理) - 可视化验证方法 需要进一步帮助可以告诉我您具体的应用场景!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值