前言
偏置算法在CAD/CAM里面应用的非常广泛,对于3D,曲线类型非常丰富,3D的偏置基本上都是点偏置(对于Nurbs这类比较复杂的参数曲线,基本是采点偏置完后进行拟合,不过需要检测局部自交,然后进行修剪处理);但对于2D,就有些专门的偏置方法了,在CAM中,输入曲线一般会转成圆弧或线段,对于型腔边界曲线的偏置,除了MAT(中轴线),便只有单段单段的偏移、最后再进行修剪的方法了。
一、2D偏置
2D的偏置算法文献非常杂乱,细节各家有各家小处理,但最经典的还属Hansen这篇,作者先将偏移后的曲线进行打断(不一定要真打断,添加交点即可),借用一个状态量进行标记干涉情况,最后将无干涉的段进行收集起来,有点类似布尔算法中的隶属度。算法逻辑非常清晰,干涉检测可以用法向量、局部夹角(参考布尔算法中的隶属关系判断);算法还便于推广到开放轮廓中(虽然开放轮廓可以暴力的去处自相交的段)。
多重交点的情况
当然,偏置的一些特殊情况也需要处理,如重交点,这点上国人进行完善了。
其他的一些偏置裁剪方法:
1.基于到原始轮廓最近距离的裁剪,小于偏置距离的都是干涉段(开放轮廓很好用)。
2.基于扫掠和布尔算法。(2d仿真一起做)
除此之外,Clipper库中计算卷绕数的方法也有用到在Offset中。
二、局部清角
对于算法生成的(如偏置)一些尖锐的刀路,实际加工是无法清角的,故需要进行局部清角,这方面的论文比较多,甚至摆线铣削在这方面也有优化。
三、刀路连接
刀路连接的方式有很多,有基于区域树进行跳刀的,但我认为最经典的还是Sang C. Park这篇,数据结构上图的有点味道,整体效果和UG刀路展现出来的非常相似,而且文中还提到了区域偏置中的反向有效环问题,需要多一次跳刀。
右侧偏置后的小岛屿便是需要注意的情况。
三、方向平行刀路(“行切”,也算是另类的偏置)
行切算法看起来简单,诸多编程人员也觉得这个算法没什么难点,可事实是,要实现快速(各种加速方法,有扫描线算法、单调连等)、稳定、可靠的刀路还挺不容易的。平行刀路的中英论文很多很杂,但最经典,和商业软件刀路最相似的还属Park的方法:
将射线交点组织成图节点。然后往复填充节点,不断沿着轮廓收集路径,最后生成刀路,最麻烦的是节点间的连通性处理,每个人有每个人的做法,有人用点数的奇偶性,也可以参考轮廓法线(没有一阶连续性时特殊处理)。
Held也有一些类似的做法: