【FinE】CAPM和Carhart四因子模型实证

CAPM实证模型

CAPM给出了期望收益与风险之间的数量关系
E ( r i ) = r i + β i [ E ( r M ) − r i ] E(r_i)=r_i+\beta_i[E(r_M)-r_i] E(ri)=ri+βi[E(rM)ri]
关于CAPM的实证研究时间序列检验和横截面回归检验.

BJS检验

根据股票的 β \beta β值对股票进行分组,估计单只股票的 β \beta β系数回归方程为
r i t − r f t = α i + β i [ r M t − r f t ] + ε i t r_{it}-r_{ft}=\alpha_i+\beta_i[r_{Mt}-r_{ft}]+\varepsilon_{it} ritrft=αi+βi[rMtrft]+εit
估计股票组合的 β \beta β系数的回归方程为
r p t − r f t = α p + β p [ r M t − r f t ] + ε p t r_{pt}-r_{ft}=\alpha_p+\beta_p[r_{Mt}-r_{ft}]+\varepsilon_{pt} rptrft=αp+βp[rMtrft]+εpt

横截面检验

计算每个组合的平均月收益率 r p r_p rp,和组合的 β p \beta_p βp进行横截面回归,检验收益与风险之间的关系
r p − r f = γ 0 + γ 1 [ r M − r f ] + ε p r_p-r_f=\gamma_0+\gamma_1[r_M-r_f]+\varepsilon_p rprf=γ0+γ1[rMrf]+εp

F-M方法

扩展证券市场线的估计,将 β 2 \beta^2 β2和估计残差的标准差加入估计方程
r p , t = γ 0 t + γ 1 t β p , t − 1 + γ 2 t β t , p − 1 2 + γ 3 t σ ( e p , t − 1 ) r_{p, t}=\gamma_{0t}+\gamma_{1t}\beta_{p, t-1}+\gamma_{2t}\beta_{t, p-1}^2+\gamma_{3t}\sigma(e_{p, t-1}) rp,t=γ0t+γ1tβp,t1+γ2tβt,p12+γ3tσ(ep,t1)

Fama-French三因子模型

E ( r i ) − r f = a i + b i ( E ( r M ) − r f ) + s i E ( S M B ) + h i E ( H M L ) E(r_i)-r_f=a_i+b_i(E(r_M)-r_f)+s_iE(SMB)+h_iE(HML) E(ri)rf=ai+bi(E(rM)rf)+siE(SMB)+hiE(HML)
三因子模型除了考虑市场因素,同时还考虑了规模因素(SMB)和价值因素(HML).

流动性溢价

阿查亚和皮得森研究了流动性水平和风险对资产定价的影响,给出了如下方程
E ( R i ) = k E ( C i ) + λ ( β + β L 1 − β L 2 − β L 3 ) E(R_i)=kE(C_i)+\lambda(\beta+\beta_{L1}-\beta_{L2}-\beta_{L3}) E(Ri)=kE(Ci)+λ(β+βL1βL2βL3)
由于流动性和流动性 β \beta β高度相关,因此将三个流动性 β \beta β合并估计
E ( R i ) = k E ( C i ) + λ M β + λ L β L i q E(R_i)=kE(C_i)+\lambda_M\beta+\lambda_L\beta_{Liq} E(Ri)=kE(Ci)+λMβ+λLβLiq

Carhart四因素模型的反转与动量效应

Fama-French(1993)提出了考虑公司规模和市值比的模型,并在美国股票市场上证明了三因子模型可以解释 70 % ∼ 80 % 70\%\sim80\% 70%80%的收益率的变化.
Carhart(1997)观测到股市上的动量现象,并将动量因子加入到Fama-French三因子模型中,建立了Carhart四因子模型.
Lesmond(2004)发现动量效应的最重要的横截面预测变量是股票的价格水平,即股票价格越低,动量效应越大.
Chen和DeBondt(2004)用S&P 500指数中的成分股作为样本,通过考察与投资风格相关的3种股票特征:股票市值,净值与市值比率以及股息率,发现基于这3种风格的动量组合在一年或更长的时间表现较好.

市值和账面价值比

公司规模由股票总市值(ME)确定,账面市值比(BE/ME)等于股票的账面价值(BE)除以股票的总市值(ME),账面价值(BE)来自上市公司财务报表中资产负债表的所有者权益合计项目.
成长型公司:低BE/ME上市公司由于基本面较好而被高估.
价值型公司:高BE/ME上市公司由于基本面较差而被低估.
Fama和French认为股市中存在的账面市值比效应(价值效应)是对价值型股票承担当前风险的补偿.

三因子构造

根据ME可以将股票分为三大类:大公司(Big Firm),占比25%;中等公司(Medium Firm),占比40%;小公司(Small Firm),占比35%.
根据BE/ME分为三组:Low(30%);Median(40%);High(30%)
通过算术平均,得到SMB和HML因子
S M B = ( S / H + S / M + S / L ) / 3 − ( B / H + B / M + B / L ) / 3 H M L = ( B / H + S / H ) / 2 − ( B / L + S / L ) / 2 \begin{aligned} &SMB=(S/H+S/M+S/L)/3-(B/H+B/M+B/L)/3\\ &HML=(B/H+S/H)/2-(B/L+S/L)/2 \end{aligned} SMB=(S/H+S/M+S/L)/3(B/H+B/M+B/L)/3HML=(B/H+S/H)/2(B/L+S/L)/2
SMB是影响被解释变量的规模因素,HML是影响被解释变量的价值因素.

反转效应和动量效应

在短期内,股票收益表现为负序列相关性,称为反转效应,在中长期内( 3 ∼ 12 3\sim 12 312个月)内表现为正序列相关性,称为动量效应.
Jegdaeehs和Timtna(1993, 2001)研究结果表示,过去 3 ∼ 12 3\sim 12 312个月表现好或者差的股票在接下来的 3 ∼ 12 3\sim 12 312个月会继续表现好或者差,这一现象表明了动量因子(MD)存在的合理性.
E ( r i ) = r f + b i [ E ( r M t ) − r f ] + c i S M B i t + d i H M L i t + e i M D i t E(r_i)=r_f+b_i[E(r_{M_t})-r_f]+c_iSMB_{it}+d_iHML_{it}+e_iMD_{it} E(ri)=rf+bi[E(rMt)rf]+ciSMBit+diHMLit+eiMDit

参考资料

投资学及R语言的应用 清华大学出版社 朱顺泉

本表以Fama-French三因子资产定价模型为依据,提供市场溢酬因子(Rm-Rf),市值因子(SMB)账面市值比因子(HML)的月序列数据。 表中计算所用的无风险收益数据选择标准为:开始--2002年8月6日用三个月期定期银行存款利率; 2002年8月7日--2006年10月7日用三个月期中央银行票据的票面利率; 2006年10月8日--当前,用上海银行间3个月同业拆放利率。 三因子数据包括: 市场溢酬因子__流通市值加权 Rm-Rf 市值因子__流通市值加权 SMB 账面市值比因子__流通市值加权 HML 市场溢酬因子__总市值加权 Rm-Rf 市值因子__总市值加权 SMB 账面市值比因子__总市值加权 HML 有以下3种方式计算的月惯性因子(又称动量因子)。 计算方法1:惯性因子=前n个月累积收益最高的30%的所有股票组合加权收益率-前n个月累积收益最低的30%的所有股票组合加权收益率。 计算方法2:惯性因子=前n个月累积收益最高的10%的所有股票组合加权收益率-前n个月累积收益最低的10%的所有股票组合加权收益率。 计算方法3:惯性因子=前n个月累积收益大于零的所有股票组合加权收益率-前n个月累积收益小于零所有股票组合加权收益率。 其中,n=3、4、5、6、7、8、9、10、11、12、18、24;加权方式为等权、流通市值加权、总市值加权。 在Carhart四因子模型经典文献中,惯性因子=前11个月累积收益最高的30%的股票组合等权收益率-前11个月累积收益最低的30%的股票组合等权收益率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值