CAPM实证模型
CAPM给出了期望收益与风险之间的数量关系
E
(
r
i
)
=
r
i
+
β
i
[
E
(
r
M
)
−
r
i
]
E(r_i)=r_i+\beta_i[E(r_M)-r_i]
E(ri)=ri+βi[E(rM)−ri]
关于CAPM的实证研究时间序列检验和横截面回归检验.
BJS检验
根据股票的
β
\beta
β值对股票进行分组,估计单只股票的
β
\beta
β系数回归方程为
r
i
t
−
r
f
t
=
α
i
+
β
i
[
r
M
t
−
r
f
t
]
+
ε
i
t
r_{it}-r_{ft}=\alpha_i+\beta_i[r_{Mt}-r_{ft}]+\varepsilon_{it}
rit−rft=αi+βi[rMt−rft]+εit
估计股票组合的
β
\beta
β系数的回归方程为
r
p
t
−
r
f
t
=
α
p
+
β
p
[
r
M
t
−
r
f
t
]
+
ε
p
t
r_{pt}-r_{ft}=\alpha_p+\beta_p[r_{Mt}-r_{ft}]+\varepsilon_{pt}
rpt−rft=αp+βp[rMt−rft]+εpt
横截面检验
计算每个组合的平均月收益率
r
p
r_p
rp,和组合的
β
p
\beta_p
βp进行横截面回归,检验收益与风险之间的关系
r
p
−
r
f
=
γ
0
+
γ
1
[
r
M
−
r
f
]
+
ε
p
r_p-r_f=\gamma_0+\gamma_1[r_M-r_f]+\varepsilon_p
rp−rf=γ0+γ1[rM−rf]+εp
F-M方法
扩展证券市场线的估计,将
β
2
\beta^2
β2和估计残差的标准差加入估计方程
r
p
,
t
=
γ
0
t
+
γ
1
t
β
p
,
t
−
1
+
γ
2
t
β
t
,
p
−
1
2
+
γ
3
t
σ
(
e
p
,
t
−
1
)
r_{p, t}=\gamma_{0t}+\gamma_{1t}\beta_{p, t-1}+\gamma_{2t}\beta_{t, p-1}^2+\gamma_{3t}\sigma(e_{p, t-1})
rp,t=γ0t+γ1tβp,t−1+γ2tβt,p−12+γ3tσ(ep,t−1)
Fama-French三因子模型
E
(
r
i
)
−
r
f
=
a
i
+
b
i
(
E
(
r
M
)
−
r
f
)
+
s
i
E
(
S
M
B
)
+
h
i
E
(
H
M
L
)
E(r_i)-r_f=a_i+b_i(E(r_M)-r_f)+s_iE(SMB)+h_iE(HML)
E(ri)−rf=ai+bi(E(rM)−rf)+siE(SMB)+hiE(HML)
三因子模型除了考虑市场因素,同时还考虑了规模因素(SMB)和价值因素(HML).
流动性溢价
阿查亚和皮得森研究了流动性水平和风险对资产定价的影响,给出了如下方程
E
(
R
i
)
=
k
E
(
C
i
)
+
λ
(
β
+
β
L
1
−
β
L
2
−
β
L
3
)
E(R_i)=kE(C_i)+\lambda(\beta+\beta_{L1}-\beta_{L2}-\beta_{L3})
E(Ri)=kE(Ci)+λ(β+βL1−βL2−βL3)
由于流动性和流动性
β
\beta
β高度相关,因此将三个流动性
β
\beta
β合并估计
E
(
R
i
)
=
k
E
(
C
i
)
+
λ
M
β
+
λ
L
β
L
i
q
E(R_i)=kE(C_i)+\lambda_M\beta+\lambda_L\beta_{Liq}
E(Ri)=kE(Ci)+λMβ+λLβLiq
Carhart四因素模型的反转与动量效应
Fama-French(1993)提出了考虑公司规模和市值比的模型,并在美国股票市场上证明了三因子模型可以解释
70
%
∼
80
%
70\%\sim80\%
70%∼80%的收益率的变化.
Carhart(1997)观测到股市上的动量现象,并将动量因子加入到Fama-French三因子模型中,建立了Carhart四因子模型.
Lesmond(2004)发现动量效应的最重要的横截面预测变量是股票的价格水平,即股票价格越低,动量效应越大.
Chen和DeBondt(2004)用S&P 500指数中的成分股作为样本,通过考察与投资风格相关的3种股票特征:股票市值,净值与市值比率以及股息率,发现基于这3种风格的动量组合在一年或更长的时间表现较好.
市值和账面价值比
公司规模由股票总市值(ME)确定,账面市值比(BE/ME)等于股票的账面价值(BE)除以股票的总市值(ME),账面价值(BE)来自上市公司财务报表中资产负债表的所有者权益合计项目.
成长型公司:低BE/ME上市公司由于基本面较好而被高估.
价值型公司:高BE/ME上市公司由于基本面较差而被低估.
Fama和French认为股市中存在的账面市值比效应(价值效应)是对价值型股票承担当前风险的补偿.
三因子构造
根据ME可以将股票分为三大类:大公司(Big Firm),占比25%;中等公司(Medium Firm),占比40%;小公司(Small Firm),占比35%.
根据BE/ME分为三组:Low(30%);Median(40%);High(30%)
通过算术平均,得到SMB和HML因子
S
M
B
=
(
S
/
H
+
S
/
M
+
S
/
L
)
/
3
−
(
B
/
H
+
B
/
M
+
B
/
L
)
/
3
H
M
L
=
(
B
/
H
+
S
/
H
)
/
2
−
(
B
/
L
+
S
/
L
)
/
2
\begin{aligned} &SMB=(S/H+S/M+S/L)/3-(B/H+B/M+B/L)/3\\ &HML=(B/H+S/H)/2-(B/L+S/L)/2 \end{aligned}
SMB=(S/H+S/M+S/L)/3−(B/H+B/M+B/L)/3HML=(B/H+S/H)/2−(B/L+S/L)/2
SMB是影响被解释变量的规模因素,HML是影响被解释变量的价值因素.
反转效应和动量效应
在短期内,股票收益表现为负序列相关性,称为反转效应,在中长期内(
3
∼
12
3\sim 12
3∼12个月)内表现为正序列相关性,称为动量效应.
Jegdaeehs和Timtna(1993, 2001)研究结果表示,过去
3
∼
12
3\sim 12
3∼12个月表现好或者差的股票在接下来的
3
∼
12
3\sim 12
3∼12个月会继续表现好或者差,这一现象表明了动量因子(MD)存在的合理性.
E
(
r
i
)
=
r
f
+
b
i
[
E
(
r
M
t
)
−
r
f
]
+
c
i
S
M
B
i
t
+
d
i
H
M
L
i
t
+
e
i
M
D
i
t
E(r_i)=r_f+b_i[E(r_{M_t})-r_f]+c_iSMB_{it}+d_iHML_{it}+e_iMD_{it}
E(ri)=rf+bi[E(rMt)−rf]+ciSMBit+diHMLit+eiMDit
参考资料
投资学及R语言的应用 清华大学出版社 朱顺泉