#!/usr/bin/env python
import cv2
import numpy as np
import math
from scipy import misc
f = open('/home/dell/handv2/943920001160067.pcd')
#f = open('/home/dell/handv2/runze11/11.pcd')
image=cv2.imread('/home/dell/handv2/1569309822.401409.jpg')
pcd_data = f.readlines()
points = np.zeros((len(pcd_data)-11,3))
imgcolor=np.zeros_like(image)
for i in range(11,len(pcd_data)):
pcd_num_data = pcd_data[i].split( )
x = float(pcd_num_data[0])
y = float(pcd_num_data[1])
z = float(pcd_num_data[2])
points[i-11][0] = x#float(pcd_num_data[0])
points[i-11][1] = y#float(pcd_num_data[1])
points[i-11][2] = z#float(pcd_num_data[2])
R=np.array([[ 0.3365607851381785, -0.1679086570289553, 0.9265708396026207],[ -0.93680688171009, 0.0400851004161823, 0.3475428766429288],[-0.0954971428252715, -0.9849872423637563, -0.1438069125350116]])
R=R.T
t=np.array([[ -0.05556732416152954],[-0.29303
根据相机雷达外参将jpg投影到pcd(直接使用opencv重投影函数版)
最新推荐文章于 2023-11-11 21:13:28 发布
本文详细介绍了如何利用相机和雷达的外部参数,结合opencv库,将jpg图像准确地重投影到pcd点云文件上,实现两者之间的视觉匹配与融合。
摘要由CSDN通过智能技术生成