三维建模工具colmap的安装与使用记录

才安装了Ubuntu新系统,从零开始安装colmap

1.依赖项安装

(1)ceres安装

sudo apt-get install liblapack-dev libsuitesparse-dev libcxsparse3.1.2 libgflags-dev libgoogle-glog-dev libgtest-dev git

sudo apt-get install libeigen3-dev 

其中libcxsparse3.1.2有可能提示错误,试试libcxsparse3.1.4或者参考https://www.cnblogs.com/qilai/p/13654810.html,具体如下:

//第一步,打开sources.list
sudo gedit /etc/apt/sources.list
//第二步,将下面的源粘贴到最上方sources.list
deb http://cz.archive.ubuntu.com/ubuntu trusty main universe
//第三步,更新源
sudo apt-get update
//第四步,重新输入依赖项安装命令安装依赖项
sudo apt-get install liblapack-dev libsuitesparse-dev libcxsparse3.1.2 libgflags-dev              libgoogle-glog-dev libgtest-dev

下载ceres,链接为https://github.com/ceres-solver/ceres-solver/tree/2.0.0

解压以后

cd ceres-solver-2.0.0  (这里下载的是2.0版本的)
mkdir build
cd build
cmake ..
make
sudo make install

(2)boost安装,Ubuntu可以直接命令行

sudo apt-get install libboost-dev
sudo apt-get install libboost-program-options-dev
sudo apt-get install libboost-filesystem-dev
sudo apt-get install libboost-graph-dev

(3)freeimage

sudo apt-get install libfreeimage-dev

(4)openGL

sudo apt-get install build-essential libgl1-mesa-dev
sudo apt-get install freeglut3-dev
sudo apt-get install libglew-dev libsdl2-dev libsdl2-image-dev libglm-dev libfreetype6-dev

(5)Qt5

sudo apt-get install cmake qt5-default qtcreator

2.colmap安装

下载链接:https://github.com/colmap/colmap/tree/3.6,这里下载的版本是3.6,版本选择如下方式

 安装,解压以后步骤如下:

cd ./colmap-3.6              # 进入colmap目录
mkdir build && cd ./build    # 创建build文件夹,并进入
cmake ..                     # cmake
make -j8                     # make多线程编译
sudo make install

 3.colmap使用

参考链接:https://www.cnblogs.com/Todd-Qi/p/10792685.html

                  https://blog.csdn.net/X_kh_2001/article/details/82591978

                  https://zhuanlan.zhihu.com/p/184978050

下面自己照做看效果

(1)自动创建,images应该在/home/saners/proj/3DRes/目录下,并且存在需要重建的图像

DATASET_PATH=/home/saners/proj/3DRes/
colmap automatic_reconstructor --workspace $DATASET_PATH --image_path $DATASET_PATH/images

(2)单步创建

//路径设置
DATASET_PATH=/home/saners/proj/3DRes/

//提取特征点
colmap feature_extractor --database_path $DATASET_PATH/database.db --image_path $DATASET_PATH/images

//特征点匹配
colmap exhaustive_matcher --database_path $DATASET_PATH/database.db

//建稀疏图
mkdir $DATASET_PATH/sparse
colmap mapper --database_path $DATASET_PATH/database.db --image_path $DATASET_PATH/images --output_path $DATASET_PATH/sparse

linux在虚拟机里,没有GPU不好创建,下面是Windows下的结果 

 

//建稠密图
mkdir $DATASET_PATH/dense
//图像去畸变
colmap image_undistorter --image_path $DATASET_PATH/images --input_path $DATASET_PATH/sparse/0 --output_path $DATASET_PATH/dense --output_type COLMAP --max_image_size 200
//为建稠密图再匹配
colmap patch_match_stereo --workspace_path $DATASET_PATH/desne --workspace_format COLMAP --PatchMatchStereo.geom_consistency true

 

          

                           原图                                        深度图                                      法向量图 

//开始建图
colmap stereo_fusion --workspace_path $DATASET_PATH/dense --workspace_format COLMAP --input_type geometric --output_path $DATASET_PATH/dense/fused.ply

                                                                      建图结果

 下面两步结果太大,这个软件看不了,推荐用matlab看

//poisson法建网格添加纹理
colmap poisson_mesher --input_path $DATASET_PATH/dense/ --output_path $DATASET_PATH/dense/meshed-poisson.ply
//delaunay法建网格添加纹理
colmap delaunay_mesher --input_path $DATASET_PATH/dense/fused.ply --output_path $DATASET_PATH/dense/meshed-delaunay.ply

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如雾如电

随缘

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值