深度学习-108-大语言模型LLM之基于langchain的结构化输出功能提取结构化信息

1 langchain的结构化输出

对于许多应用程序,例如聊天机器人,模型需要直接用自然语言响应用户。然而,在某些情况下,我们需要模型以结构化格式输出。例如,我们可能希望将模型输出存储在数据库中,并确保输出符合数据库模式。这种需求激发了结构化输出的概念,其中可以指示模型以特定的输出结构进行响应。
在这里插入图片描述

1.1 推荐的使用流程

(1)模式定义:输出结构表示为模式,可以通过几种方式定义。
(2)返回结构化输出:模型被赋予这个模式,并被指示返回符合它的输出。

此伪代码说明了使用结构化输出时推荐的工作流程。

# 定义模式
schema = {"foo": "bar"}
# 模式绑定到模型
model_with_structure = model.with_structured_output(schema)
# 调用模型以生成与模式匹配的结构化输出
structured_output = model_with_structure.invoke(user_input)

LangChain提供了一个方法with_structured_output(),该方法自动化了将模式绑定到模型并解析输出的过程。
此辅助函数适用于所有支持结构化输出的模型提供程序。

1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮冰燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值