CMOS图像传感器——TOF 图像传感器

本文深入探讨了3D成像技术,重点解析了飞行时间(TOF)方法,包括间接和直接飞行时间测量原理,以及SPAD TOF图像传感器的工作机制。TOF技术因其高精度、低成本和广泛的应用前景,如虚拟现实和智能手机,正成为3D成像领域的主流技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、3D成像技术概述  

        图像传感器一直以来都是人类研究的热点。但随着当代科学技术发展, 人类对于传统的 2D 图像传感器的要求越来高,不仅期望着更高分辨率,更快速度,更大的动态范围,人类加希望能够获得物体深信息,但是 2D 成 像技术现在已经不能满足人类的需求,所以应运而生了 3D 成像技术。下图展示了采用 3D 成像技术所获得的图,(a)中是一个实际的场景,(b)表示通过表示通过 3D 成像技术获得的该场景的深度信息。

         目前市场上常见的3D 成像技术主要有结构光法,双目立体视觉法和飞行时间法等,我们主体上采用2001年 Optical Engineering(《光学工程》)一书中的分类,如下图所示

        <

### 使用CMOS传感器实现激光测距的方法原理 #### 方法概述 为了实现在民用市场上成本较低的高精度测距功能,一种可行方案是利用CMOS图像传感器配合特定算法来完成距离测量。通过改变镜头与CMOS之间的相对位置找到最佳成像点可以间接获取物体的距离信息[^1]。 #### 技术细节 具体来说,在某些应用场景中会采用飞行时间(Time of Flight, ToF)技术或三角测量法来进行精确测距。对于基于ToF的解决方案,当脉冲激光照射目标后反射回来被接收器捕捉到的时间差能够用来计算实际距离;而如果是三角测量法则依赖于已知基线长度以及两个视角下的视差角大小推算出目标物离设备有多远[^3]。 #### 算法挑战 值得注意的是,无论是哪种方式都离不开强大的软件支持。特别是在移动终端领域内实施此类操作时面临着诸多难题——不仅需要跨越多个学科的知识边界去开发相应程序逻辑,而且还要确保这些算法可以在各种复杂条件下稳定运行,比如不同类型的光源干扰、快速变化的动作姿态或是极端天气状况等等[^2]。 ```python import numpy as np def calculate_distance(time_of_flight_speed_of_light=299792458): """ 计算基于ToF原理的距离 参数: time_of_flight (float): 飞行时间(秒) speed_of_light (int): 光速,默认值为真空中的速度 返回: float: 距离(米) """ def inner_calculate(time_of_flight): return (time_of_flight * time_of_flight_speed_of_light) / 2 return inner_calculate # 示例调用 calculate_to_f = calculate_distance() distance = calculate_to_f(0.00000001) # 假设飞行时间为1纳秒 print(f"Distance is {distance:.6f} meters") ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沧海一升

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值