使用yolov5训练自己的数据集

一、环境部署:

建议使用 pychram 或 jupyter notebook,当然Google colab最好了
1. 源码下载
git clone https://github.com/ultralytics/yolov5
2. ** 安装需要的环境**

cd yolov5
pip install -U -r requirements.txt

二 、数据准备

标注软件是labelimg,选择yolo格式,文件夹按这个方式排序
在这里插入图片描述
images –
train --训练用图片数据
val --测试用图片数据
labels
train --训练用标注文件
val – 测试用的标注文件

标注的格式:
在这里插入图片描述

三、修改参数

1.data文件夹下新建自己的.yaml文件,我直接用的voc的,修改下就可以
文件位置,标注,及类别数量
在这里插入图片描述

2.在models文件夹中新建自己的文件,我直接使用的yolov5s.yaml,修改nc
在这里插入图片描述
anchors可以自己聚类分析,也可以用默认的

四、训练

加载预训练模型,先下载,有脚本我就不贴了
直接训练

!python train.py --data voc.yaml --cfg yolov5s.yaml --weights 'yolov5s.pt' --batch-size 64

不得不说,googleGPU真香

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值