如何运用yolov5训练自己的数据-手把手教你学yolo)

在这篇博文中,我们对YOLOv5模型进行微调,用于自定义目标检测的训练和推理。

目录

  1. 引言: YOLOv5是什么?
  2. YOLOv5提供的模型
  3. YOLOv5提供的功能
  4. 使用YOLOv5进行自定义目标检测训练
  5. 自定义训练的方法 自定义训练代码
  6. 准备数据集
  7. 克隆YOLOv5存储库
  8. 训练小模型(yolov5s)
  9. 训练YOLOv5中型模型
  10. 冻结层训练中型YOLOv5模型
  11. 性能比较
  12. 结论

引言:

深度学习领域在2012年开始快速发展。在那个时候,这个领域还比较独特,编写深度学习程序和软件的人要么是深度学习实践者,要么是在该领域有丰富经验的研究人员,或者是具备优秀编码技能的人。

而现在,仅过去10年左右,情况已经发生了巨大变化,而且变得更好。现在,只需要学习了几周的学生就可以用不到20行代码训练一个神经网络模型。而且,这不仅仅是在基准数据集上进行训练,我们可以使用一些最好的模型来训练自定义数据集。不相信吗?好的,那么我们就在这篇文章中使用YOLOV5进行自定义目标检测训练,来证明这一点。

YOLOv5是什么?

如果你在机器学习和深度学习领域已经有一段时间了,很有可能你已经听说过YOLO。YOLO是You Only Look Once的缩写。它是一系列基于单阶段深度学习的目标检测器。它们能够以超过实时的速度进行目标检测,并具有最先进的准确性。

在Darknet框架中,官方发布了四个版本。

YOLOv5是一种用于目标检测的深度学习模型。它是YOLO(You Only Look Once)系列的下一代版本,采用了PyTorch框架,并由Ultralytics组织在GitHub上开发。YOLOv5包含了多种不同大小和准确性的模型,适用于各种场景和设备。

YOLOv5一共有五个模型,

包括:

  • YOLOv5n:最小的nano模型,适用于边缘设备、物联网设备和具有OpenCV DNN支持的环境。
  • YOLOv5s:小型模型,适合在CPU上进行推断。
  • YOLOv5m:中等大小的模型,是速度和准确性之间的平衡点,适用于许多数据集和训练任务。
  • YOLOv5l:大型模型,适用于需要检测较小物体的数据集。
  • YOLOv5x:最大的模型,拥有最高的mAP指标,但相对较慢,参数数量为86.7百万。

使用YOLOv5进行自定义目标检测训练的方法如下:

  1. 准备数据集:包括标注好的图像和对应的标签文件。
  2. 克隆YOLOv5仓库:从GitHub上获取YOLOv5代码和预训练模型。
  3. 使用训练代码:根据需要选择合适的模型进行训练,并设置训练参数和路径。
  4. 运行训练:执行训练代码开始模型训练,可以根据需求选择使用GPU或CPU进行训练。
  5. 检查性能:比较不同模型的mAP、FPS和推断时间,评估训练结果。

总之,YOLOv5是一种强大的目标检测模型,在深度学习领域有着广泛的应用。它提供了多个模型可供选择,可以根据需求进行定制化训练,并能在不同设备上进行高效的目标检测。

训练自己的数据

具体来说,本文提到了使用YOLOv5进行自定义目标检测训练的步骤,并使用了Vehicle-OpenImages数据集作为示例。

mosaic数据增

img

添加图片注释,不超过 140 字(可选)

数据集包含439张用于训练的图像,125张用于验证,以及63张用于测试。但在本文中,我们只会使用训练和验证集。在继续之前,这里有几张图像,上面画有真实框的标注。

img

添加图片注释,不超过 140 字(可选)

自定义训练的方法

让我们看一下使用YOLOv5进行自定义训练时我们将涵盖的内容。

我们将从训练小型YOLOv5模型开始。 然后我们将训练中型模型,并与小型模型进行比较,看是否有改进。 接下来,我们将冻结中型模型的几层,然后再次训练模型。 我们将在上述所有情况下进行推断,并比较推断视频过程中的mAP指标和FPS。 自定义训练代码 让我们开始编码部分。所有的代码都包含在一个Jupyter笔记本中,你可以从下载部分获取。

在这里,我们将介绍所有必要和重要的代码部分。包括:

准备数据集。

按照上面讨论的方法训练三个模型。 性能比较。 对图像和视频进行推断。 让我们仔细研究代码的所有重要部分,从导入我们在笔记本中使用的模块和库开始。

准备数据集 下一步是下载和准备数据集。我们需要一个简单的辅助函数来下载数据集并解压



if not os.path.exists('train'):#论文辅导、代码获取,作业帮助
    !curl -L "https://public.roboflow.com/ds/xKLV14HbTF?key=aJzo7msVta" > roboflow.zip; unzip roboflow.zip; rm roboflow.zip
     
    dirs = ['train', 'valid', 'test']
 
    for i, dir_name in enumerate(dirs):
        all_image_names = sorted(os.listdir(f"{dir_name}/images/"))
        for j, image_name in enumerate(all_image_names):
            if (j % 2) == 0:
                file_name = image_name.split('.jpg')[0]
                os.remove(f"{dir_name}/images/{image_name}")
                os.remove(f"{dir_name}/labels/{file_name}.txt")

数据结构如下


├── test
│   ├── images
│   └── labels
├── train
│   ├── images
│   ├── labels
│   └── labels.cache
├── valid
│   ├── images
│   ├── labels
│   └── labels.cache
├── data.yaml
├── README.dataset.txt
└── README.roboflow.txt

配置文件YAML设置

YOLOv5训练中最重要的一个属性可能是数据集的YAML文件。该文件包含训练和验证数据的路径,以及类别名称。在执行训练脚本时,我们需要将此文件路径作为参数提供,以便脚本可以识别图像路径、标签路径和类别名称。数据集已经包含了这个文件。以下是我们在这里用于训练的data.yaml文件的内容


train: ../train/images
val: ../valid/images
nc: 5
names: ['Ambulance', 'Bus', 'Car', 'Motorcycle', 'Truck']

克隆代码

为了使用YOLOv5代码库的任何功能,我们需要克隆他们的存储库。以下几行代码克隆了存储库,进入yolov5目录,并安装我们可能需要运行代码的所有要求


if not os.path.exists('yolov5'):
    !git clone https://ultralytics/yolov5.git
%cd yolov5/
!pip install -r requirements.txt

训练

现在,让我们一起了解训练脚本的所有参数。

–data:该参数接受我们之前创建的数据集YAML文件的路径。在我们的情况下,它是当前目录的上一级目录,因此为 …/data.yaml。 --weights:该参数接受我们想要用于训练的模型。由于我们使用YOLOv5系列中的小型模型,因此值为 yolov5s.pt。 --img:我们还可以在训练时控制图像大小。在将图像馈送到网络之前,图像将被调整为此值。我们将它们调整为640个像素,这也是最常用的尺寸之一。 --epochs:该参数用于指定训练的epoch数。由于我们已经在上面的EPOCHS变量中指定了epoch数,因此我们在此提供该变量。 --batch-size:这是在训练时将加载到一个批次中的样本数。虽然这里的值为16,但你可以根据可用的GPU内存进行更改。 --name:我们可以提供一个自定义目录名称,其中将保存所有结果。在我们的情况下,我们提供了刚刚通过调用set_res_dir函数创建的路径。

训练结果

   Images     Labels          P          R     mAP@.5 mAP@
                 all        125        227      0.149      0.211     0.0944     0.0305
...
Epoch   gpu_mem       box       obj       cls    labels  img_size
     24/24     3.94G   0.03121   0.01958  0.009307        21       640: 100%|███
               Class     Images     Labels          P          R     mAP@.5 mAP@
                 all        125        227      0.655      0.515      0.587       0.41
 
25 epochs completed in 0.190 hours.
Optimizer stripped from runs/train/results_4/weights/last.pt, 14.5MB
Optimizer stripped from runs/train/results_4/weights/best.pt, 14.5MB
 
Validating runs/train/results_4/weights/best.pt...
Fusing layers... 
Model summary: 213 layers, 7023610 parameters, 0 gradients
               Class     Images     Labels          P          R     mAP@.5 mAP@
                 all        125        227      0.514      0.646      0.588       0.41
           Ambulance        125         32      0.541      0.812      0.741      0.605
                 Bus        125         23      0.586      0.739      0.714      0.502
                 Car        125        119      0.521       0.58      0.531       0.34
          Motorcycle        125         23      0.668      0.699      0.659      0.397
               Truck        125         30      0.254        0.4      0.296      0.20

评价指标展示

img

添加图片注释,不超过 140 字(可选)

推理结果展示

在训练过程中,代码库会将每个epoch的验证批次的预测保存到结果目录中。在我们查看这些预测之前,让我们编写一个辅助函数来找到结果目录中的所有验证预测并展示它们



#论文辅导、代码获取,作业帮助
def show_valid_results(RES_DIR):
    !ls runs/train/{RES_DIR}
    EXP_PATH = f"runs/train/{RES_DIR}"
    validation_pred_images = glob.glob(f"{EXP_PATH}/*_pred.jpg")
    print(validation_pred_images)
    for pred_image in validation_pred_images:
        image = cv2.imread(pred_image)
        plt.figure(figsize=(19, 16))
        plt.imshow(image[:, :, ::-1])
        plt.axis('off')
        plt.show()

img

添加图片注释,不超过 140 字(可选)

mAP比较

img

添加图片注释,不超过 140 字(可选)

结论

img

添加图片注释,不超过 140 字(可选)

在本文中,我们进行了许多使用YOLOv5进行训练和推理的实验。我们从使用YOLOv5小型模型进行自定义对象检测训练和推理开始。然后,我们转向YOLOv5中型模型的训练,还尝试了部分冻结层的中型模型训练。本文让我们深入了解了YOLOv5代码库的工作原理,并了解了不同模型之间的性能和速度差异。

论文辅导、代码获取,作业帮助

鉴于本文中进行的大量实验,你是否注意到了什么?除了一些通用的Python函数外,我们没有编写任何深度学习代码。这表明深度学习领域变得越来越易于访问,希望未来也会朝着同样的方向发展。如果你尝试在自己的数据集上进行自定义训练并发现有趣的结果,请不要忘记在评论区分享你的成果。# 1. 项目介绍

面青识别(face_classification )是一个基于深度学习的面部表情识别项目,它使用 Keras 和 TensorFlow 框架来实现模型的训练和预测。该项目的主要目标是在图像或视频中检测并识别人脸表情,并将其分类为七种不同的情绪类别:生气、厌恶、害怕、高兴、平静、伤心和惊讶。该项目使用了深度卷积神经网络(CNN)来实现面部表情识别。

```bash
xx
```

img

添加图片注释,不超过 140 字(可选)

该项目提供了一个简单易用的用户界面,可以实时从网络摄像头或视频文件中捕获面部图像,并对其进行情绪识别。此外,该项目还提供了一个 Python 库,可以方便地将其集成到其他项目中。

# 2. 项目原理

面部表情识别是计算机视觉领域的一个重要研究方向,它的主要目标是通过计算机算法来识别人脸图像中的情绪表达。面部表情识别技术的应用非常广泛,例如在人机交互、虚拟现实、心理学研究等方面都有重要的应用价值。

面部表情识别技术的核心是如何从人脸图像中提取有效的特征,并将其映射到不同的情绪类别上。深度学习技术已经在这一领域取得了很大的进展,其中最常用的是卷积神经网络(CNN)。

该项目使用了一个经过预训练的 CNN 模型,即 VGG16,作为特征提取器,并在其之上添加全连接层和 softmax 分类器来进行情绪分类。VGG16 是一个深度卷积神经网络,由 16 层卷积层和全连接层组成,其中每个卷积层都使用了 3x3 的卷积核和 ReLU 激活函数。该模型在 ImageNet 数据集上预训练,可以提取出图像中的高层次特征。

具体地,表情识别face_classification 项目使用了以下步骤来进行面部表情识别:

\1. 人脸检测:首先,使用 OpenCV 库中的 Haar 级联分类器对输入图像进行人脸检测,以获得人脸区域。

\2. 特征提取:然后,使用 VGG16 模型对人脸图像进行特征提取,得到一个具有高层次抽象特征的向量。

\3. 情绪分类:最后,将特征向量输入到一个全连接层和 softmax 分类器中,将其映射到七种不同的情绪类别上,即生气、厌恶、害怕、高兴、平静、伤心和惊讶。

为了增加模型的鲁棒性和泛化能力,face_classification 项目还使用了数据增强技术,如旋转、缩放和翻转等,来增加其训练数据集的多样性和数量。

3. 项目安装

face_classification 项目是一个开源项目,可以在获取。以下是安装 face_classification 项目的步骤:

  1. 安装 Python3 和 pip:首先,需要在计算机上安装 Python3 和 pip 包管理器。可以从 Python 官网下载 Python3 安装包,并使用官方文档中的指南进行安装。

  2. 克隆 face_classification 项目:在命令行中,输入以下命令克隆 face_classification 项目:

img

  1. 安装依赖项:进入项目文件夹,并使用以下命令安装项目所需的依赖项:

```

cd face_classification

pip install -r requirements.txt

```

  1. 运行项目:安装完依赖项后,可以使用以下命令启动 face_classification 项目的用户界面:

```

python3 main.py

```

该命令将启动一个简单的用户界面,可以实时从网络摄像头或视频文件中捕获面部图像,并对其进行情绪识别。

除了用户界面之外,face_classification 项目还提供了一个 Python 库,可以方便地将其集成到其他项目中。要使用 face_classification Python 库,只需在项目中导入 face_classification 模块,并使用其中的函数进行图像处理和情绪识别。

img

添加图片注释,不超过 140 字(可选)

# 结论

ython3 main.py

```

该命令将启动一个简单的用户界面,可以实时从网络摄像头或视频文件中捕获面部图像,并对其进行情绪识别。

除了用户界面之外,face_classification 项目还提供了一个 Python 库,可以方便地将其集成到其他项目中。要使用 face_classification Python 库,只需在项目中导入 face_classification 模块,并使用其中的函数进行图像处理和情绪识别。

[外链图片转存中…(img-Ul49RvdT-1735219135518)]

添加图片注释,不超过 140 字(可选)

# 结论

总之,face_classification 项目是一个功能强大、易于使用和高精度的面部表情识别项目,可以为许多实际应用场景提供帮助,如情感识别、虚拟现实等。安装和使用该项目非常简单,即使没有深度学习经验的用户也可以轻松上手。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值