论文复现---BeatGAN

论文复现---BeatGAN

原创 小王搬运工 时序课堂 2024-06-11 10:02 四川

图片

BeatGAN: Anomalous Rhythm Detection using Adversarially Generated Time Series

图片

BeatGAN:使用对抗生成时间序列的异常心律检测

图片

https://github.com/Vniex/BeatGAN

图片

  • PyTorch (1.0.0)

  • scikit-learn (0.20.0)

  • biosppy (0.6.1) # For data preprocess

  • tqdm (4.28.1)

  • matplotlib (3.0.2)

注意事项:

问题1:

图片

这个地方按照这个安装我尝试了很多次都没安装成功,如果配置过国内镜像源如清华源,其中是没有老版本pytorch,清华源最早支持gpu的pytorch版本是1.5.0。而且torchvision的0.2.1这个版本即使是在pytorch自己的仓库都找不到,只能找到0.2.0,更别说在国内的镜像源中了。

解决方法:

去官网下载安装包进行安装:

https://download.pytorch.org/whl/cu100/torch_stable.html

然后找到torchvision,可以发现没有torch0.2.1,只有0.2.0,这里按照0.2.0安装也没有问题。

问题2:python版本不适配

图片

问题3:GPU无法使用

这里我更改GPU检测部分,默认使用CPU运行一切正常!

其余的运行时提示缺少什么功能库,按照最新版默认安装即可。

图片

https://www.dropbox.com/scl/fo/c14su187vh95gzchm7fgk/AGGykb6I5hMrbazgC8TDvPU?rlkey=rbzdfgp5y6bftpuwueqg7cpb1&e=1&dl=0

下载路径:BeatGAN\experiments\ecg\dataset\preprocessed\ano0

修改数据集加载路径:

图片

图片

本地电脑可以正常运行,由于性能原因未等到训练完,等待放到服务器上运行。

图片

图片

全套代码分享,包含数据集等,配好环境,没有问题即可运行。

链接:https://pan.baidu.com/s/1FUP-P6S4qm9WQZOPTJ3G-A

提取码:irb7

--来自百度网盘超级会员V6的分享

### 关于 RT-DETR 论文复现的方法与代码实现 #### 官方资源获取 RT-DETR 是一种实时目标检测模型,其官方代码托管在 GitHub 上[^1]。通过访问该仓库可以找到完整的源码和文档支持。为了成功复现实验结果,可以从以下几个方面入手。 #### 创建训练脚本 为了简化操作流程并减少终端命令输入的工作量,可以在项目根目录下创建一个 Python 文件 `run.py` 来执行训练过程[^2]。以下是具体的代码示例: ```python from ultralytics import RTDETR # 导入 RTDETR 类 # 加载模型配置文件 model = RTDETR("ultralytics/cfg/models/rt-detr/rtdetr-l.yaml") # 使用模型进行训练 model.train( data="fire.v1i.yolov8/data.yaml", # 数据集配置路径 cfg="ultralytics/cfg/default.yaml", # 默认配置路径 epochs=100 # 设置训练轮数 ) ``` 上述代码展示了如何加载预定义的 YAML 配置文件来构建模型,并指定数据集及相关参数完成训练任务。 #### 调参指南 针对不同硬件环境或特定需求下的性能优化,调参是一个重要环节。根据已有资料[^3],建议按照以下原则调整超参数: - **网络结构选择**:对于轻量化场景可选用 ResNet18;而对于更高精度的需求,则推荐使用更深层次的骨干网如 ResNet50 或更深版本。 - **学习率调度器设定**:合理规划初始学习率及其衰减策略有助于提升收敛速度与最终效果。 - **批量大小调节**:依据 GPU 显存容量适当增减 batch size 值以平衡计算效率与梯度估计质量之间的关系。 此外还需注意的是所有改动均需基于官方发布的基础之上做出相应修改以免偏离原作设计理念造成不可预期的结果影响后续投稿审核等工作进展顺利开展下去。 #### 注意事项 当尝试重现一篇学术文章中的技术成果时务必忠实原文描述的各项条件包括但不限于所使用的框架版本号、依赖库清单以及具体算法细节等内容这样才能最大程度保障所得结论具备科学性和可信度同时也便于他人重复验证进而推动整个领域向前发展迈进一大步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

末世灯光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值