结合CoT思维链的workflow应用拆解(基于Dify平台)

本文原创作者:姚瑞南 AI-Agent 大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权) 

目录

结论

应用效果图

LLM输出结果

workflow拆解

1. 开始

2. 任务拆解(LLM)

prompt

3. 任务提取(参数提取器)

prompt

4. 任务迭代(迭代)

4.1 任务解析(代码执行)

4.2 任务执行(LLM)

prompt

5. 输出结果

6. 归纳答案

7. 结束


结论

0-1搭建workflow分步推理将问题拆分出相应的解题步骤,应用效果显著(相比LLM模型直接回复不经过though过程);

应用效果图

LLM输出结果

问题分析步骤
确定旅游时间和天气:北京的最佳旅游时间通常是春季(4月至5月)和秋季(9月至10月),因为这两个季节天气宜人,温度适中,适合户外活动和观光。春季可以欣赏到城市花园和公园中的花卉盛开,而秋季的北京则以其金黄的树叶和清爽的空气而闻名。
在确定具体的旅游日期时,可以提前一周查询天气预报,以便更好地准备旅行所需的服装和安排相应的活动。例如,如果预计会有降雨,可以计划一些室内活动或携带雨具。
注意:由于天气预报可能会有变化,建议持续关注天气更新,以便及时调整旅行计划。
规划旅游路线:
Day 1: 历史与文化探索
天安门广场 - 从这里开始一天的旅程,感受中国的历史与文化。
故宫博物院 - 步行即可到达,探索古代皇宫建筑和历史文物。
景山公园 - 从故宫步行到这里,可以俯瞰整个故宫的壮丽景观。
南锣鼓巷 - 晚餐后前往,体验北京的胡同文化和夜生活。
Day 2: 自然与艺术
颐和园 - 早晨从市区乘坐地铁或公交前往,欣赏皇家园林的自然美景。
798艺术区 - 下午返回市区,参观这个现代艺术区,感受当代艺术氛围。
簋街 - 晚上在这里体验北京的特色美食。
Day 3: 历史与现代的融合
长城(八达岭段) - 早晨出发,乘坐公共交通或参加一日游,感受长城的雄伟。
鸟巢和水立方 - 返回市区后,参观2008年奥运会的标志性建筑。
大栅栏 - 晚上漫步于这条古老的商业街,体验老北京的风情。
其他兴趣特定景点
天坛公园 - 如果时间允许,可以在早晨参观,体验古代祭天的场所。
雍和宫 - 参观这座保存完好的藏传佛教寺庙。
北海公园 - 一个放松的去处,适合散步和划船。
交通与建议
公共交通:北京的地铁系统方便快捷,覆盖大部分旅游景点。
步行:很多景点之间距离不远,步行可以更好地感受城市氛围。
建议:提前查好每个景点的开放时间,合理安排出行计划,避免高峰时段。
安排交通和住宿:
交通方式
从你所在城市到北京的交通方式:
飞机:如果你所在的城市有机场,可以选择直飞北京的航班,北京有两个主要机场:北京首都国际机场(PEK)和北京大兴国际机场(PKX)。根据你的出发地,选择合适的航班。
高铁/火车:中国的高铁网络非常发达,很多城市都可以乘坐高铁或者火车到达北京。北京的主要火车站有北京站、北京西站、北京南站和北京北站。
长途汽车:对于较近的城市,可以选择乘坐长途汽车到达北京,费用相对较低。
在北京的交通方式:
地铁:北京的地铁系统非常便捷,覆盖了主要的旅游景点和商业区。建议购买北京地铁交通卡(交通联合卡)以便于出行。
公交车:公交线路也很发达,适合短途出行或去地铁不便到达的地方。
出租车/网约车:出租车价格相对合理,也可以使用滴滴等网约车服务,方便快捷。
共享单车:在市区内,尤其是景点之间,可以使用共享单车(如ofo、小黄车)进行短途旅行,这也是一种体验当地生活的方式。


选择住宿地点
考虑旅游路线:
如果你的旅游计划主要集中在北京市区,建议选择市中心的住宿,如王府井、东单、朝阳区等区域。
如果计划游览长城等郊区景点,可以考虑在这些景点附近的住宿。
交通便利性:
市中心酒店:如王府井、东单等区域的酒店,方便前往天安门、故宫、后海等地。
地铁附近酒店/民宿:选择靠近地铁站的酒店或民宿,可以方便地前往各个景点和商业区。
特色民宿:如果想要体验北京的文化,可以选择四合院改建的民宿,这类住宿通常位于胡同里,别有一番风味。
价格考量:
根据预算选择合适的住宿,市区的星级酒店价格较高,但提供更优质的服务。
民宿、青年旅社等则提供了更为经济的住宿选择。


在规划时,建议提前预订交通和住宿,尤其是在旅游旺季,以确保行程的顺利进行。
计划每日活动和饮食:
第一天:抵达与初体验
上午:抵达北京,入住酒店,稍作休息。
中午:前往全聚德品尝正宗北京烤鸭。
下午:参观天安门广场和故宫博物院。
晚餐:在王府井大街享用北京地道小吃,如炸酱面、糖葫芦。
晚间:散步在王府井步行街,观赏夜景。
第二天:文化与历史
上午:游览长城(建议选择八达岭或慕田峪段)。
中午:在长城附近的餐馆享用午餐。
下午:返回市区,前往颐和园观赏皇家园林。
晚餐:前往簋街,体验北京的麻辣小龙虾及其他川菜。
第三天:现代与传统
上午:参观天坛公园,感受古代皇家祭天文化。
中午:品尝老北京涮羊肉。
下午:游览798艺术区,体验现代艺术氛围。
晚餐:选择南锣鼓巷的特色餐馆,品尝豆汁、卤煮火烧等。
第四天:购物与放松
上午:到北京动物园观光。
中午:动物园附近餐馆享用简餐。
下午:前往三里屯或国贸购物,体验北京的现代都市风情。
晚餐:在三里屯选择一家西餐或日式料理餐厅。
晚间:返回酒店休息,准备次日返程。
美食清单
北京烤鸭:全聚德、便宜坊。
炸酱面:海碗居、老北京炸酱面馆。
豆汁:护国寺小吃、南锣鼓巷小吃店。
小吃街:王府井、南锣鼓巷、簋街。
备注
每个景点建议预留1.5至3小时游览时间。
考虑交通因素,建议使用地铁或出租车。
建议提前预约知名餐馆以避免排队。
准备旅行必需品和注意事项:
旅行物品清单
衣物:
根据北京的天气准备合适的衣物。北京的春秋季气温适中,建议准备轻便的外套和舒适的步行鞋。夏季气温较高,建议穿着透气的衣物和防晒装备。冬季寒冷,需准备厚实的保暖衣物。
电子设备:
相机:记录旅行的美好瞬间。
充电器和备用电池:确保所有电子设备随时可用。
移动电源:方便在外出时为手机等设备充电。
药品:
常备药物:根据个人需要携带常用药品,例如感冒药、晕车药、止泻药等。
急救用品:创可贴、消毒湿巾等基本急救用品。
其他:
护照或身份证:必要的身份证明文件。
现金和银行卡:方便支付,部分地方可能不支持电子支付。
地图或导航应用:帮助规划路线。


注意事项
文化礼仪:
了解当地的文化习俗,尊重北京的传统和习惯。比如在参观寺庙时请保持安静,不要随意拍照。
旅游安全提示:
注意人身和财物安全,尤其是在繁忙的旅游景点和公共交通工具上。
遇到紧急情况时,可以拨打中国的紧急电话:110(报警)、120(急救)。
交通和出行:
北京交通相对繁忙,建议提前规划好出行路线,尽量选择地铁等公共交通工具。
注意高峰时段的人流量,尽量避开拥挤时段出行。
健康和卫生:
注意饮食卫生,选择干净的餐饮场所。
旅行期间保持良好卫生习惯,勤洗手,必要时佩戴口罩。


通过充分准备和了解当地信息,可以更好地享受北京的旅行体验。
最终解答
北京旅游攻略:
最佳旅游时间
春季(4-5月)和秋季(9-10月),天气宜人。
旅游路线
Day 1: 历史与文化
天安门广场,故宫博物院,景山公园,南锣鼓巷
Day 2: 自然与艺术
颐和园,798艺术区,簋街
Day 3: 历史与现代
长城(八达岭),鸟巢和水立方,大栅栏
其他景点
天坛公园,雍和宫,北海公园
交通
地铁和公交为主,出租车和共享单车为辅。
住宿
市中心,如王府井、东单,或地铁附近。
美食推荐
北京烤鸭(全聚德),炸酱面,豆汁。
准备事项
根据季节带合适衣物。
带好电子设备、药品、身份证明。
注意文化礼仪和旅游安全。
提前规划和预定,确保行程顺利。





workflow拆解

1. 开始

入参

2. 任务拆解(LLM)

prompt
你是一个能够进行详细、逐步思考的AI助手。收到问题后,不要直接给出答案,而是通过分步推理将问题拆分出相应的解题步骤,只需给出步骤的名称和任务描述,不要自行解答,至少要保证有 3 个步骤。

3. 任务提取(参数提取器)

prompt
提取内容中的步骤数组,示例如下: 
[ 
	{ 
		"name": "步骤名称", 
		"content": "任务描述" 
	}, 
	{
		"name":"步骤名称", 
		"content":"任务描述"
	}, 
	... 
]

4. 任务迭代(迭代)

4.1 任务解析(代码执行)

def main(step) -> dict:
    # 清洗得到只包含步骤名称和内容的字典
    step_name = step['name']
    step_content = step['content']
    return {
        'name': step_name,
        'content': step_content
    }

4.2 任务执行(LLM)

prompt
## 问题
"""{query}"""


## 任务背景
这是工作流中的一个环节,前面的工作流流程会将问题拆分出 N 个步骤。


## 任务
根据问题拆分出的步骤,解答指定步骤的任务,本轮任务名称:{name}
,任务描述:{{content}}


## 初始化
不必回答整个问题,分析解答这个步骤的问题即可。


## 输出
采用 Markdown 输出解答,示例如下:
- {name}:【步骤解答】

5. 输出结果

{{ step_answer | join("\n")}}

6. 归纳答案

## 原问题
"""
"""


## 任务
检查原问题,并归纳以下分析(请注意可能会出错,发现错误请进行纠正),最后给出问题最终答案,答案言简意赅即可。

7. 结束

### 自动化思维概念 自动化思维是指通过一系列预定义逻辑步骤自动处理复杂任务的能力。这种能力允许系统不仅执行简单的命令,还能模拟人类思考过程中的推理条,在面对新情况时做出合理判断并采取适当行动[^3]。 在具体实现上,自动化思维依赖于精心设计的提示工程(prompt engineering),即构建能够引导大型语言模型(LLMs)按照预期路径进行推理和决策的输入指令。这涉及到编写清晰、结构化的自然语言描述来表达问题情境及其求解目标,并可能包含辅助信息如示例数据集或先前的知识片段以增强上下文关联度。 ### 应用场景 #### 数据分析与解释 当应用于数据分析领域时,自动化思维可以协助分析师快速理解大量原始资料背后隐藏的趋势及模式。例如,在金融风险评估过程中,可以通过设定特定查询条件让AI自主完成从收集市场动态到预测潜在波动的一整套流程,最终给出具有建设性的结论建议[^4]。 #### 安全防护机制 对于网络安全而言,“智能动态防御”技术便是利用了类似的原理——借助高度定制化的响应策略应对未知威胁。这类方案通常会集成多种传感器获取实时环境参数变化,再经由内部算法解析这些信号特征进而触发相应的保护措施,形成闭环控制系统确保整体安全性不受侵害[^2]。 ```python def analyze_data(data_set, query_conditions): """ 使用自动化思维对给定的数据集执行指定类型的分析 参数: data_set (list): 输入待分析的数据列表 query_conditions (dict): 查询条件字典 返回: dict: 分析结果摘要报告 """ # 构建初始提示字符串 prompt = f"Given the dataset {data_set}, please perform analysis based on these conditions:" for key, value in query_conditions.items(): prompt += f"\n- For field '{key}', filter by '{value}'" # 向大模型发送请求并接收返回的结果 response = call_large_language_model_api(prompt) return parse_response_into_summary(response) # 假设函数用于调用外部API接口 def call_large_language_model_api(prompt_text): pass # 实际开发中应替换为真实的服务调用代码 # 解析来自LLM的回答转化为易于阅读的形式 def parse_response_into_summary(api_result): pass # 这里同样需要根据实际情况补充具体的业务逻辑 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值