【学习笔记】卡尔曼滤波中的协方差矩阵

本文转载至:

添加一些自己的理解和标注的重点,算是学习笔记吧;

一. 什么是卡尔曼滤波:

首先定义问题: 对于某一个系统,知道当前状态Xt,存在以上两个问题:

1. 经过时间△t后,下一个状态X_{t+1}如何求出?

2. 假定已求出X_{t+1},在t+1时刻收到传感器的非直接信息Z_{t+1},如何对状态X_{t+1}进行更正?

这两个问题正式卡尔曼滤波要解决的问题,形式化两个问题如下:

1.预测未来

2.修正当下

下面以一个一维的例子简单理解一下卡尔曼滤波的理论框架。

二. 卡尔曼滤波的理论框架:

一维运动为例,假如有一个小车,开始位于x=  的位置,但是由于误差的存在,其真实分布是高斯分布,其方差是 ,即其原始位置分布是 ,当该小车经过运动,到达终点位置,但是由于运动也是不准确的(打滑等),其移动过程的分布也是高斯分布,移动分布为,那么其最终的位置分布是多少呢?

这是一个预测未来的过程,由前一时刻的位置和猜测的偏移,求新的位置,求预测位置符合全概率法则,即:

即,最终分布的均值为均值相加,方差也为方差相加,感性理解就是一个不确定的分布,经过一段不确定的移动后,其方差更大了,分布中心为两个中心和。


考虑另外一种情况,假入有一个小车,开始位于x= 的位置,但是由于误差的存在,其真实分布是高斯分布,其方差是 ,即其原始位置分布是,当时此时有一个传感器检测到该小车位于,分布方差为,那么小车的真实位置分布为多少呢?

这是一个感知过程,也就是通过传感器的数据修正当下,其感知过程符合贝叶斯法则,其最终分布是两个分布相乘,即

感性理解就是一个不确定位置的小车,经过传感器观测,其最终位置分布方差会更小,且位置中心位于两个分布之间

在一维模式下,感知过程融合后的均值和方差分别为:                       

我们令                                                                                 

则,


总结:当一个位置小车经过移动后,且其定位和移动过程都是高斯分布时,其最终估计位置分布会更分散,即更不准确;当一个小车经过传感器观测定位,且其定位和观测都是高斯分布时,其观测后的位置分布会更集中,即更准确。

又总结:上面的两个例子总结了在一维状态下,预测过程和感知过程的均值和协方差的更新是如何更新的,也就是\mu {}'\mu _{1}\mu _{2}的关系,以及\sigma {^{2}}', \sigma _{1}^{2}, \sigma _{2}^{2} 之间的关系;下面的博客更清晰地讲解了预测过程和感知过程.

接下来是扩展到二维状态下的一个例子:

问题场景如下:一个机器人, 我们想知道它实时的状态\vec{x}, 同时也想做到预测未来修正当下这两件事.

其状态x表示为一个一维的大小为2的向量, 元素分别表示位置信息与速度信息:

但是这个状态不一定准确, 其不确定性用协方差表示:

预测未来

只考虑机器人本身的运动, 根据物理公式,可得:

用矩阵表示如下:

在状态变化的过程中引入了新的不确定性, 根据协方差的乘积公式,

可得:

其中是系统在k-1时刻状态的不确定性;

考虑外部状态, 以引入加速度为例, 引入变量

同时,环境中仍然存在我们无法刻画的误差, 以表示, 最终的预测公式如下:

也就是在原本的不确定性的基础上,又加入了新的不确定性,得到了新的当前时刻状态变量的不确定度,也就是协方差;

修正当下

我们已经得到,, 下面要通过观测到的测量值  对 ,  进行更新;

因为  ,  和 的数据尺度不一定相同,例如 ,包含了笛卡尔的坐标信息, 使用雷达得到的则包含极坐标信息. 所以首先应该把两者挡在相同的尺度下去比较, 尺度转换使用 \mathbf{H_{k}}将预测信息转换为测量信息的尺度.

这样一来,得到测量尺度上的两个分布:

1. 测量值的分布N(x, \mu _{1}, \sigma _{1}))

2. 预测值的分布N(x, \mu _{0}, \sigma _{0}))

在修正当下的过程中,这两个分布会组成新的分布.

新的均值和方差的计算在第一部分的时候已经推导过, (姑且称之为感知变化公式),即为:

扩展到二维情况下,公式如下(该公式也是kalman滤波的核心,):

而在这里这种情况里,测量值对应的均值和协方差分别是,

预测未来的到的状态的均值和协方差分别是: 

根据感知变化公式,可得在这个例子里面新的均值和协方差的公式如下:K变成{\color{DarkRed} K{}'}, 就获得了新的状态量的值,以及其对应的不确定性

总结

预测未来

修正当下

理论总结:

kalman滤波的理论框架是全概率法则贝叶斯法则,在设定中假设预测和感知均有误差,且均服从正态分布,且预测过程(预测未来)感知过程(修正当下)采用不同的概率更新策略,具体采取的策略如下所示:

  • 预测过程符合全概率法则,是卷积过程,即采用概率分布相加;
  • 感知过程符合贝叶斯法则,是乘积过程,即采用概率分布相乘;

参考:(建议按照顺序阅读下面的博客,对于理解卡尔曼滤波很重要)

史上zui好的卡尔曼滤波基础讲解

史上zui全的卡尔曼滤波讲解:从一到三

上面的博文是参考了大佬们的博客,总结在一起的,前面一维的公式推导都很好理解,只是二维那边省略了一些公式推导过程,下面是我的推导过程,比较详细,最后的结果稍微有一点不一样,大家可以参考一下,有问题的话也欢迎提出来告诉我~~

我最后的推导结果中,和上面彩色的公式区别如下:

1. K和上面彩色的{\color{Orchid} K' }多一个{\color{Pink} H_{k}}

2. u' 也就是 \hat{x_{k}}{}' 跟彩色的 \hat{x_{k}}{}'也差左乘一个{\color{Pink} H_{k}}

3. \Sigma' 也就是P_{k}' 与上面彩色的 P_{k}' 也是差一个左乘一个{\color{Pink} H_{k}},右乘一个{\color{Pink}H_{k}^{T} }

 

 

 

 

 

  • 29
    点赞
  • 177
    收藏
    觉得还不错? 一键收藏
  • 12
    评论
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值