对称锥规划:锥与对称锥

本文介绍了对称锥的概念及其在优化中的应用,包括非负向量空间、二阶锥和半定锥等类型。对称锥的平方操作简化了分析,而其自身对偶性的特性使得优化问题更易处理。二阶锥规划(SOCP)作为一种强大的工具,能解决多种问题,并可通过内点法高效求解,甚至能转换为SDP问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对称锥规划:锥与对称锥

本文主要讲锥与对称锥的一些基本概念。

基础预备:

凸优化学习笔记(一)

在这里插入图片描述 在这里插入图片描述

锥的几何形状

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

常用的指向锥

在这里插入图片描述

Nonnegative Orthant

当n=2时,可以理解为非负的象限,当n=3时,可以理解为非负的卦限。经过仿射变换后,可以理解为n个半空间的交。

在这里插入图片描述

二阶锥

在这里插入图片描述 在这里插入图片描述

半定锥

在这里插入图片描述 在这里插入图片描述

对称锥

在这里插入图片描述

对称锥的平方操作

通过欧几里得若当代数 ( R n , ∘ ) \left(\mathbb{R}^n, \circ\right) (Rn,),可以将对称锥写成一个平方的形式,便于规划分析与统一表达。

在这里插入图片描述 在这里插入图片描述

对称锥的谱分解

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

对称锥的自身对偶性

对称锥的对偶锥还是它本身。

在这里插入图片描述

二阶锥规划SOCP

很多问题都可以转化为二阶锥规划来求解,而二阶锥规划能够使用内点法很快求解。例如下图,使用松弛方式可以将QP问题转化成SOCP问题。

在这里插入图片描述

根据Shur补定理,又可将SOCP问题转化为SDP问题。因此,就问题的表达能力而言,LP<QP<SOCP<SDP

在这里插入图片描述

参考文献

机器人中的数值优化

最优化:建模、算法与理论/最优化计算方法

正定矩阵的相关性质,凸锥

锥,凸锥,二阶锥,二阶锥规划

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xuuyann

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值