每天一篇论文 278/365 LDSO: Direct Sparse Odometry with Loop Closure

原文
Video
Code
泡泡图灵

摘要

在这篇文章中,我们将稀疏直接法里程计(DSO)扩展为一个带有回环检测和位姿图优化的单目SLAM系统(LDSO)。作为直接法的使用者,DSO可以使用任何具有足够强度梯度的图像像素,这使得它即使在无特征区域也具有鲁棒性。LDSO保留了这种鲁棒性,同时通过支持跟踪前端中的角点确保了其中一些点的可重复性。这种可重复性允许使用传统的基于特征的词袋(BoW)方法来可靠地检测回环的候选者。回环的候选者在几何上进行验证,然后通过联合优化2D和3D的集合误差项估计Sim(3)上的相对姿态约束。这些约束与从DSO滑动窗口优化中提取的相对姿态的共视图融合。我们在公开可用数据集上的评估表明,改进的点选择策略保持了跟踪精度和鲁棒性,并且集成的姿态图优化显著地减少了累积的旋转、平移和尺度漂移,从而我们的总体性能与最先进的基于特征的系统相媲美,即使是在没有全局的集束调整下。

贡献

1、本文改写了DSO的点选择策略来支持可重复的角点特征,同时保持其对于特征点少的环境的鲁棒性。然后所选用的角点用于使用常规Bow方法的闭环检测。
2、本文利用匹配特征点的深度估计结合位姿集束调整和点云对齐来计算Sim(3)位姿约束,并且并行于里程计的前端,将它们与从DSO滑动窗口中提取的相对位姿共视图融合。
3 、在真实世界数据集上进行广泛的评估。

在这里插入图片描述
1、 像素选择策略

图2展示了LDSO相较于DSO像素选择策略的结果,上下分别是两个例子,红色的图像是DSO的结果,绿色的图像是LDSO(只显示了角点),注意看蓝色框中,可以看出两个算法提出像素可重复性的不同。
在这里插入图片描述
2、回环分析

如图5所示,在TUM-Mono上红线代表的DSO有明显的漂移。图6显示,拥有闭环优化的LDSO在重建上拥有更好的性能。
TUM-Mono数据集上的轨迹
在这里插入图片描述LDSO中开启闭环前后的重建地图
在这里插入图片描述

发布了131 篇原创文章 · 获赞 10 · 访问量 7679
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览