Plug-and-Play: Improve Depth Prediction via Sparse Data Propagation
代码
本文提出了一种基于推理而非网络的深度增强算法,这种算法最大的有点就是不用训练,直接可以通过推理在深度预测的结果上进一步进行深度增强,实验中对各种深度估计计算法加入增强算法,结果都获得了不同程度的提升。
其他深度增强论文
2. Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image
5.Sparse and dense data with cnns: Depth completion and semantic segmentation
https://blog.csdn.net/uniqueyyc/article/details/83340864
摘要
我们提出了一个新的即插即用(PnP)模块来改善以任意稀疏深度模式为输入的深度预测。给定任何预先训练的深度预测模型,我们的PnP模块更新中间特征映射,使模型输出与给定稀疏深度一致的新深度。我们的方法不需要额外的训练,可以应用到实际应用中,例如利用RGB和稀疏的LiDAR点来稳健地估计密集深度图。我们的方法在室内(即NYU-v2)和室外(即KITTI)数据集的各种最新方法上实现了一致的改进。实验中还合成了各种类型的激光雷达,以验证PnP模块在实际中的普遍适用性。
从稀疏数据中恢复深度
本文目标是设计一个模块,可以灵活地集成到任何现有的方法,并提高其性能。从这个建模的角度出发,将目标任务从深度重建进一步扩展到深度细化,在深度细化中,给定的稀疏数据可以提高深度估计或重建的初始结果。据我们所知,最接近我们范围的工作是[6]通过将卷积空间传播网络连接到深度估计网络来提出卷积空间传播网络,从而实现深度细化。然而,**这种方法[6]需要额外的训练阶段,而我们的方法只需要执行推理阶段。**值得注意的是,对于给定的稀疏数据,我们的方法可以很好地应用于深度重建和深度细化方法。
6 .Depth estimation via affinity learned with convolutional spatial propagation network
有监督深度估计
给定输入数据x,我们的目标是最小化预测f(x)和地面真值深度D之间的误差,相对于由θ参数化的网络f:
真值深度推理
基于稀疏点更新中间特征映射z的PnP模块,这样的更新是否保证了密集深度图的改进仍然是一个问题。在本节中,我们的方法为密集深度重建提供了足够正确的指导。这里,我们首先考虑z的梯度,如果给出了稠密的地面真值D:
本文的深度增强后的提升效果