计量经济学笔记之OLS回归的推导

入坑计量经济学(重新学习一遍,大学学的计量太简单了,只是操作软件,对于计量模型理解很浅,这一次关注核心的原理、公式的推导,python在计量经济学中的应用)

计量经济学中,当提到矩阵推导的一致性时,通常是指估计量的一致性。一致性是一个统计性质,指的是随着样本容量增加至无穷大,一个估计量依概率收敛于所要估计的真实参数值。 对于线性回归模型中的最小二乘法(OLS)估计量来说,其一致性的条件可以通过高斯-马尔科夫定理来理解。该定理由一系列假设构成,在这些假设下可以保证OLS估计量是一致的。具体而言: - 回归模型正确设定:即模型包含了所有相关的解释变量,并且函数形式被准确地指定。 - 解释变量之间没有完全共线性:这意味着设计矩阵X必须是满秩的;也就是说,不存在两个或更多的预测因子提供相同的信息。 - 平均独立误差项:E[ε|X] = 0, 即给定任何解释变量的情况下,扰动项的期望为零。 - 同方差性和无序列相关性:Var(ε|X)=σ^2I_N,其中I_N表示N阶单位矩阵,这表明残差具有恒定的有限方差并且彼此不相关。 为了证明OLS估计量$\hat{\beta}$的一致性,需要展示如下极限成立: $$\lim_{n \to \infty} P(||\hat{\beta}-\beta||>\epsilon )=0,$$ 对任意正数$\epsilon>0$都成立,这里$n$代表样本大小,$\beta$是真实但未知的参数向量,而$\hat{\beta}$是从观测数据得到的OLS估计量。 从理论上讲,如果上述条件满足,则可以利用弱律大数定律(Law of Large Numbers),以及一些代数运算技巧来进行严格的数学证明。实际过程涉及到了解矩陣運算、概率论和随机过程等高级主题的知识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云金杞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值