mac:大模型系列测试

0 MAC

前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。

1 mac 与 unsloth

按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。

注意:一定要切换分支!python版本不要太高!

mac安装unsloth_mac unsloth-CSDN博客

下载模型:我下载速度好慢!

from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/Llama-3.2-3B-Instruct')

训练一下看看如何:跑通没有障碍,后面的文章我会继续介绍unsloth~

推理测试

文件名称换成自己的即可!

from mlx_lm import load, stream_generate

repo = "/Users/****/.cache/modelscope/hub/models/LLM-Research/Llama-3.2-3B-Instruct"
model, tokenizer = load(repo)

prompt = "你会做什么,请用100字回答"

messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
    messages, add_generation_prompt=True
)

for response in stream_generate(model, tokenizer, prompt, max_tokens=512):
    print(response.text, end="", flush=True)
print()

 结果:我可以提供信息、答案和建议。我们可以在许多领域交流,如教育、科技、娱乐、生活tips等。您有什么问题或想讨论的主题?我会尽力帮助您。

2 总结

可以看到,经过mac可以满足微调以及推理测试,后面我会继续使用unsloth测试mac的能力。内容包含:获取文本数据、拉取大模型、使用不同的策略进行微调、对齐等过程!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值