目标识别、目标检测、目标分割、语义分割 专业术语解释

计算机视觉的任务很多,有图像分类、目标检测、语义分割、实例分割和全景分割等,那它们的区别是什么呢?

object recognition(目标识别)

  • 给定一幅图像
  • 检测到图像中所有的目标(类别受限于训练集中的物体类别)
  • 得到检测到的目标的矩形框,并对所有检测到的矩形框进行分类

在这里插入图片描述

Image Classification(图像分类)

图像分类(下图左)就是对图像判断出所属的分类,比如在学习分类中数据集有人(person)、羊(sheep)、狗(dog)和猫(cat)四种,图像分类要求给定一个图片输出图片里含有哪些分类,比如下图的例子是含有person、sheep和dog三种。
左下角图片
在这里插入图片描述

object detection(目标检测)

  • 与object recognition目标类似
  • 但只有两个类别,只需要找到目标所在的矩形框和非目标矩形框
  • 例如,人脸检测(人脸为目标、背景为非目标)、汽车检测(汽车为目标、背景为非目标)
  • 右下角为目标检测
    在这里插入图片描述

Object Segmentation(目标分割)

  • 与object recognition相似,检测到图像中的所有目标
  • 但是像素级的,需要给出属于每一类的所有像素点,而不是矩形框
    在这里插入图片描述

Image Segmentation(图像分割)

  • 将给定的图像分割为多个区域
  • 每个区域为一类,但不需要给出label
    在这里插入图片描述

emantic segmentation(语义分割)

  • 需要对图像的每一个像素点进行分类
  • 语义分割(下图左)就是需要区分到图中每一点像素点,而不仅仅是矩形框框住了。但是同一物体的不同实例不需要单独分割出来。对下图左,标注为人,羊,狗,草地。而不需要羊1,羊2,羊3,羊4,羊5等。
  • 图片左下角
    在这里插入图片描述

Instance segmentation(实例分割)

实例分割(上图右)其实就是目标检测和语义分割的结合。相对目标检测的边界框,实例分割可精确到物体的边缘;相对语义分割,实例分割需要标注出图上同一物体的不同个体(羊1,羊2,羊3…)

目前常用的实例分割算法是Mask R-CNN。

Mask R-CNN 通过向 Faster R-CNN 添加一个分支来进行像素级分割,该分支输出一个二进制掩码,该掩码表示给定像素是否为目标对象的一部分:该分支是基于卷积神经网络特征映射的全卷积网络。将给定的卷积神经网络特征映射作为输入,输出为一个矩阵,其中像素属于该对象的所有位置用 1 表示,其他位置则用 0 表示,这就是二进制掩码。

一旦生成这些掩码, Mask R-CNN 将 RoIAlign 与来自 Faster R-CNN 的分类和边界框相结合,以便进行精确的分割:

<think>嗯,用户问的是图像语义分割,我需要先弄清楚这个概念的定义。首先,图像分割应该是指将图像分成不同的区域或对象,而语义分割可能更强调对每个区域的语义理解。需要区分一下语义分割实例分割的不同,对吧?比如,语义分割可能只关心类别,比如汽车、行人,而实例分割会区分不同的个体,比如两辆不同的汽车。 然后,用户可能想了解它的应用场景。比如自动驾驶、医疗影像分析这些领域。需要举一些具体的例子,说明它的实际用途。这样用户更容易理解。 技术方法方面,可能需要提到传统的算法深度学习方法。传统方法可能包括阈值分割、边缘检测、区域生长等,但深度学习方法,尤其是卷积神经网络(CNN),比如全卷积网络(FCN)、U-Net、DeepLab系列应该比较重要。需要简单介绍这些模型的结构特点,比如U-Net的跳跃连接,DeepLab的空洞卷积。 另外,评价指标也很重要,常用的有像素准确率、IoU(交并比)、Dice系数等。需要解释这些指标的意义,比如IoU是预测区域真实区域的重叠比例。 可能用户还想知道当前的挑战,比如小目标分割、边缘精细化、实时性要求等。这些可以作为补充内容,让回答更全面。 要确保使用正确的中文术语,并且结构清晰,分点说明。同时,注意使用LaTeX格式的数学公式时,行内公式用$...$,独立公式用$$...$$,并且正确应用。例如,提到损失函数时可以用交叉熵损失:$L = -\sum y_i \log(p_i)$,或者Dice系数:$Dice = \frac{2|A \cap B|}{|A| + |B|}$。 需要检查是否有遗漏的重要点,比如数据集的介绍,比如PASCAL VOC、COCO、Cityscapes等常用数据集,这对实际应用模型训练很重要。另外,可能还要提到数据标注的成本高,这也是一个挑战。 最后,总结一下语义分割的意义,比如帮助计算机理解图像内容,是计算机视觉的基础任务之一,为后续任务如目标检测、图像编辑等提供支持。 确保回答符合系统级指令,正确使用LaTeX,结构清晰,分步骤或分点,语言口语化但专业,避免使用Markdown格式。</think>图像语义分割计算机视觉中的基础任务,其核心是将图像中的每个像素分配一个语义类别标签。以下是分步说明: 1. **基本定义** 输入一张图像,输出与输入同尺寸的掩膜(mask),每个像素值对应其语义类别。例如: $$输入图像 \xrightarrow{分割} \begin{cases} \text{像素}(x,y)=0 & \rightarrow \text{背景} \\ \text{像素}(x,y)=1 & \rightarrow \text{汽车} \\ \text{像素}(x,y)=2 & \rightarrow \text{行人} \end{cases}$$ 2. **与相关任务的区别** - **目标检测**:定位物体并给出边界框,但不细化到像素级 - **实例分割**:在语义分割基础上区分同类物体的不同个体(如两辆不同汽车) - **全景分割**:同时实现语义分割实例分割 3. **关键技术方法** *传统方法*: - 基于颜色/纹理:阈值分割($I(x,y)>T$)、区域生长 - 基于边缘检测:Canny算子、Sobel算子 *深度学习方法*: - **全卷积网络(FCN)**:将CNN全连接层替换为卷积层,实现端到端分割 - **U-Net**:编码器-解码器结构+跳跃连接,解决细节信息丢失问题 - **DeepLab系列**:使用空洞卷积扩大感受野(如$3\times3$卷积核+空洞率=2) 4. **典型评价指标** - **交并比(IoU)**:$\frac{预测区域 \cap 真实区域}{预测区域 \cup 真实区域}$ - **平均像素精度**:$\frac{\sum_{i}正确预测的i类像素数}{\sum_{i}总i类像素数}$ - **Dice系数**:$\frac{2|A \cap B|}{|A| + |B|}$ 5. **应用场景** - 自动驾驶:道路、障碍物识别(如Cityscapes数据集) - 医学影像:肿瘤区域分割(U-Net在ISBI细胞分割竞赛中表现优异) - 遥感分析:土地利用分类 6. **当前挑战** - 小目标分割精度低(如交通标志) - 实时性要求(需平衡模型复杂度与速度) - 数据标注成本高(标注一张图像平均需1.5小时) 例如在自动驾驶中,当摄像头捕捉到$512\times512$像素的道路场景时,语义分割模型需在约50ms内完成处理,输出每个像素属于道路、车辆或行人的概率分布,最终通过$\arg\max$得到类别标签
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python图像识别

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值