Kaggle实战之leaf classification(树叶分类)

本文介绍了在Kaggle上的树叶分类实战,数据已转化为192维特征向量。通过比较不同分类器,发现LinearDiscriminantAnalysis表现最佳,达到97.98%准确率,最终选择它对无标签数据进行分类。
摘要由CSDN通过智能技术生成

介绍

首先来直观看下所要分类的图像数据:

这里写图片描述
这里写图片描述

在这里一共是99种树叶,每种树叶包含16幅图像,因此训练集中一共1584幅图像。然而,我们不对图像直接操作,kaggle为每个图像提供三组特征:形状连续描述符,内部纹理直方图和细尺度边缘直方图。 对于每个特征,每个叶样本给出一个64属性的向量,因此,对于一幅图像来说,一共是64x3=192个向量。kaggle把每个训练图像转化成一个192维向量,并把所有训练图像的数据保存到train.csv文件中,包括标签。这样,在实际训练使用时,可以直接提取train.csv文件中的数据,其实是kaggle直接把数据给提取好了,不需要对图像再进行操作。train.csv文件中的内容如下所示:

这里写图片描述

树叶分类

当拿到数据和标签后,第一个问题就是该如何分类,选择哪种分类器,不急,一步一步推进吧!

第一步:导入训练和测试数据

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

def warn(*args, **kwargs): pass
import warnings
warnings.warn = warn

from sklearn.preprocessing import LabelEncoder
from sklearn.cross_validation import StratifiedShuffleSplit

train = pd.read_csv('C:/Users/new/Desktop/data/train.csv')
test = pd.read_csv('C:/Users/new/Desktop/data/test.csv')

第二步:准备好训练/测试数据以及标签

def encode(train, test):
    le = LabelEncoder().fit(train.species) #对数据进行标签编码
    labels = le.transform(train.species)           # encode species strings
    classes = list(le.classes_)                    # save column names for submission
    test_ids = test.id                             # save test ids for submission

    train = train.drop(['species', 'id'], axis=1)  
    test = test.drop(['id'], axis=1)

    return train, labels, test, test_ids, classes

train, labels, test, test_ids, classes = encode(train, test)

编码后的部分标签数据:


                
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值