多传感器数据标定融合完整教程:时间同步+空间同步(Camera+Lidar+IMU+Radar)

多传感器融合是一项结合多传感器数据的综合性前沿内容,主要包括Camera、激光雷达、IMU、毫米波雷达等传感器的融合,在自动驾驶、移动机器人的感知和定位领域中占有非常重要的地位;

随着AI技术的大规模落地,图森、百度、滴滴、Waymo、Momenta、华为、纵目科技、智加科技、赢彻科技、小鹏、蔚来、魔视智能等公司开始逐渐落地自己的L2~L4等级的辅助/自动驾驶产品,从自动泊车、车道保持、行人障碍物预警、定位、测距、跟踪等多个任务都离不开多传感器融合,前视相机、鱼眼相机、毫米波雷达、激光雷达、IMU等传感器一起工作,鲁棒性、准确度都高于单一传感器,因此被多种方案采用,相关技术更是受到重点关注;

86afedbc478fd55d376d629b431f47ab.png

f153d420c0215154a1e9063feebbf704.png

dff7d44823be3e6c8feee43120004aa2.png

自动驾驶持续受到资本青睐,2021年以来,陆续收到多家自动驾驶公司获得4亿美元以上的投资的好消息,如独角兽公司Momenta,专注重卡领域的图森科技、智加科技等。目前,重卡无人驾驶汽车图森科技已经成功上市,智加科技也传来即将上市的消息,可见自动驾驶这条赛道是非常具有潜力的。相关企业对多传感器融合岗位需求日益增加,华为、百度、图森、滴滴、Momenta、小鹏、蔚来等公司更是开出高薪聘请相关人才,助力相关产品的落地研发。

然而,由于门槛较高,无论是高校还是企业,针对自动驾驶感知融合方面的相关课程少之又少,令许多对该行业感兴趣的童鞋无从下手,而这也正是工坊推出该课程的初衷,希望通过自己的一些工程项目经验帮助大家进入喜欢的行业。

《自动驾驶中的多传感器数据融合》课程主要分两个大模块:理论篇和实战篇,由两位知名自动驾驶公司算法人员教授。理论篇部分主要介绍自动驾驶中常用的传感器硬件、传感器间的时间同步和空间同步以及多传感器间的信息融合理论知识;实战篇更多偏向工程应用,工程中传感器间同步与融合如何实现等,课程大纲如下:

405b8e26e6100dd4077536312a0b6051.png

目前所有课程已完成录制,从补充学习资料到理论、实战、代码篇干货满满,随时观看,随时学习!课程资料如下所示:

b41a96c6c76e059b6965bdf57cc019ea.png

16e998af3e86076d9999805d4cc1ab57.png

1.多相机空间同步

8de1d53d76b92e2b6841e9a4a8de38dd.png2.相机与IMU的空间同步

9fad9018752223223c818a2a9e0a4f61.png

3.激光雷达与相机同步

e8010bd5085de8648f69ff7d97993f7b.png

3be9ddf5db425e3f28db05e083bd8391.png

4.激光雷达与IMU同步

b9e1ffdf95dcafa038185b898dccca95.png

5.信息融合

3596ca6aafba7c305ba5073b798927a7.png

源码汇总

d2697bcf7c668d9a2602e231c85279de.png

b985145b3fcaf7dac602c62797007067.png课程亮点

1. 深入浅出,循序渐进,从理论到实战逐个攻破;

2. 讲师数年工程经验倾情奉献,数据、源码开源帮助学员更好地理解每一个细节;

3. 理论结合实践,教授结束后布置练习项目,答疑群内,讲师面对面和学员一起交流遇到的难题;

4. 优质的学习圈子,可以和来自上海交大、南京大学、华中科技大学、西北工业大学等高校学子一起讨论学习,你踩过的坑他们大概率踩过;

5. 真正能面向工业落地的内容分享;

学后收获

1. 对多传感器同步、标定以及融合算法的理论有较深的理解;

2. 能够掌握各个传感器模型,真正动手实现多个传感器之间的标定、同步以及融合代码;

3. 掌握的技能能够真正对接企业对融合算法工程师的技术栈要求;

课程要求及面向对象

1. 主要面向自动驾驶领域、SLAM领域相关的在读本科生、硕士、博士,以及正在工作岗位上上的一线工程算法人员,也欢迎想要转入该领域的其它方向的童鞋;

2. 需要有一定的计算机视觉相关基础知识、熟悉C++、Python编程,熟悉ROS框架,对camera、激光雷达、毫米波雷达、IMU等硬件和模型有一定了解;

3. 对线性代数、矩阵论、概率论有一定的了解;

点击购买与咨询

f984bebec8c3771505b641a114adebac.png

▲微信扫码可查看、购买、学习课程

c6cfcb7afb514fee850bdb054cebc9de.png
群号:910070197
▲课程咨询QQ群,了解课时安排、学习方式

05fb9974a7551693066766eee8f961a7.png

▲长按加客服微信,咨询更多

点击“阅读原文”也可直接购买课程

自动驾驶是指通过计算机系统和传感器技术,使汽车能够独立地在道路上行驶和遵守交通规则。多传感器融合是自动驾驶技术中重要的一部分,它通过将多个传感器的数据进行融合,提高了汽车系统对环境的感知和理解能力。 相机和惯性测量单元(IMU)是常用的传感器之一。相机可以获取道路上的图像信息,例如道路标志、交通信号灯、行人和车辆等。然而,仅仅依靠相机数据是不够的,因为图像可能受到光照、天气和道路状况等因素的影响,导致图像质量变差。这就需要通过融合IMU数据来提高数据的准确性和可靠性。 IMU包含加速度计和陀螺仪,可以测量车辆的加速度和角速度。通过计算加速度和角速度的变化,可以获得车辆的位置、速度和姿态信息。与相机数据相结合,可以更准确地推测车辆的位置和运动,提高自动驾驶系统的感知能力。 实现相机和IMU的同步很重要。相机的图像帧和IMU数据都是以不同的频率生成的,因此需要将它们进行时间戳同步。通过高精度的时间戳标记,可以确保相机和IMU数据能够在正确的时间点进行匹配。这样,相机图像的每一帧都可以与IMU数据的特定时间点相对应,从而实现数据融合和处理。 通过相机和IMU的同步,自动驾驶系统可以更准确地感知道路上的环境,并作出更准确的决策和控制。例如,当相机检测到红灯时,结合IMU数据可以更准确地判断车辆的速度和行驶方向,从而及时停车。因此,相机和IMU的同步是实现自动驾驶技术的重要环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值