基于U-Net+残差网络的语义分割缺陷检测

一、介绍

基于深度学习的缺陷检测主要集中在场景识别、object detection等方法,近年来,推出了一系列优秀的语义分割模型,比如SegNet、FCN、U-Net等。语义分割模型被广泛的应用到场景识别、道路分割等领域中,缺陷检测领域也逐渐接受该模型。

本博文主要关注和实现基于U-Net的语义分割模型。

二、U-Net

如下图所示,这是U-Net的核心思想,从编码到解码,编码过程就是下采样,解码时,把同级的编码特征进行拼接,一起上采样。

详细算法请参考:https://blog.csdn.net/natsuka/article/details/78565229
在这里插入图片描述

U-Net由于把编码特征加入到解码特征中,可以在小数据量下取得很好效果,但是有个问题,U-Net网络不够深,对特征的表达不够准确,残差网络之所以取得这么好的分类效果其实就是网络足够深,一般来说网络更深,表达能力更强。

下面是改进的U-Net,其中ResNet Block数量为6。

在这里插入图片描述

三、实验数据

如下图所示,对缺陷的地方直接赋值像素为255,其它区域像素值保持不变,这样就可以生成标签数据。在代码中,对训练图像和标签图像分别进行0~1处理,对输入图像直接除以255,对标签图像,生成二进制图像,像素值为255,则置1,否则置0。
在这里插入图片描述
在这里插入图片描述

四、测试结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、算法改进

实验表明,如果只使用U-Net+残差模块,对大的缺陷区域分割

  • 9
    点赞
  • 111
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
### 回答1: 非常抱歉,我无法写代码. 但是我可以给你一些建议和提示: - 先了解 U-Net 模型的工作原理, 并确定你要使用哪种版本的 U-Net (例如残差 U-Net). - 使用深度学习框架(例如 TensorFlow, PyTorch)来构建模型. - 选择合适的数据集进行训练和测试. - 在训练过程中, 调整超参数 (例如学习率, 优化器, 批大小) 以获得最佳结果. - 在训练过程中, 使用可视化工具 (例如 TensorBoard) 来监控训练进度和模型表现. - 使用测试数据评估模型的性能, 并考虑使用数据增强来提高模型的泛化能力. 希望这些建议对你有帮助! 如果你有其他疑问, 请随时追问. ### 回答2: 残差U-Net是一种用于医学图像分割的深度学习架构,它结合了U-Net和残差网络的优点,能够更好地捕捉图像中的细节和边缘信息。下面是一个基于残差U-Net的医学图像分割代码示例: 首先,我们需要导入必要的库和模块: ```python import tensorflow as tf from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPooling2D, Conv2DTranspose, Concatenate, Input from tensorflow.keras import Model ``` 接下来,我们定义一个自定义的残差块,它由两个卷积层组成: ```python def residual_block(x, filters): res = x x = Conv2D(filters, kernel_size=(3, 3), padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv2D(filters, kernel_size=(3, 3), padding='same')(x) x = BatchNormalization()(x) x = tf.keras.layers.add([res, x]) x = Activation('relu')(x) return x ``` 然后,我们定义残差U-Net模型: ```python def residual_unet(input_shape): inputs = Input(shape=input_shape) # 输入层 # 下采样 conv1 = Conv2D(64, kernel_size=(3, 3), padding='same')(inputs) conv1 = BatchNormalization()(conv1) conv1 = Activation('relu')(conv1) conv1 = Conv2D(64, kernel_size=(3, 3), padding='same')(conv1) conv1 = BatchNormalization()(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = residual_block(pool1, 128) # 自定义残差块 pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = residual_block(pool2, 256) # 自定义残差块 pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = residual_block(pool3, 512) # 自定义残差块 pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) conv5 = residual_block(pool4, 1024) # 自定义残差块 # 上采样 up6 = Conv2DTranspose(512, kernel_size=(2, 2), strides=(2, 2), padding='same')(conv5) conv6 = Concatenate()([up6, conv4]) conv6 = residual_block(conv6, 512) # 自定义残差块 up7 = Conv2DTranspose(256, kernel_size=(2, 2), strides=(2, 2), padding='same')(conv6) conv7 = Concatenate()([up7, conv3]) conv7 = residual_block(conv7, 256) # 自定义残差块 up8 = Conv2DTranspose(128, kernel_size=(2, 2), strides=(2, 2), padding='same')(conv7) conv8 = Concatenate()([up8, conv2]) conv8 = residual_block(conv8, 128) # 自定义残差块 up9 = Conv2DTranspose(64, kernel_size=(2, 2), strides=(2, 2), padding='same')(conv8) conv9 = Concatenate()([up9, conv1]) conv9 = residual_block(conv9, 64) # 自定义残差块 outputs = Conv2D(1, kernel_size=(1, 1), activation='sigmoid')(conv9) # 输出层 model = Model(inputs=inputs, outputs=outputs) return model ``` 最后,我们可以创建一个残差U-Net模型的实例,并编译和训练模型: ```python # 定义输入图像的形状 input_shape = (256, 256, 3) # 创建模型实例 model = residual_unet(input_shape) # 编译模型 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, batch_size=32, epochs=10, validation_data=(x_val, y_val)) ``` 以上就是一个基于残差U-Net的医学图像分割代码的示例。希望能对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值