三维点坐标求解最优平面(法向量)

根据一系列的三维空间点,求解该点集合的最优平面,确定该平面的法向量。

根据点的空间位置 ( X i , Y i , Z i ) ( X_{i},Y_{i},Z_{i}) (Xi,Yi,Zi),假设最优平面的方程为:
c o s α X + c o s β Y + c o s γ Z + p = 0 cos \alpha X + cos \beta Y + cos \gamma Z + p = 0 cosαX+cosβY+cosγZ+p=0
式中 c o s α , c o s β , c o s γ cos\alpha,cos\beta,cos\gamma cosα,cosβ,cosγ为平面上点 ( X , Y , Z ) (X,Y,Z) (X,Y,Z)处的法向量的方向余弦, ∣ p ∣ |p| p为原点到平面的距离。上式也可改写为:
a x + b y + c z = d ( d ≥ 0 ) , a 2 + b 2 + c 2 = 1 ax + by + cz = d(d \geq 0), a^{2} + b^{2}+c^{2}=1 ax+by+cz=d(d0),a2+b2+c2=1
求参数 a b c d 即可求出空间点所对应的最优平面。
————————————————————————————————————
由空间点集合 ( X i , Y i , Z i ) , i ∈ 1 , 2 , 3 … … n (X_{i},Y_{i},Z_{i}),i \in 1,2,3……n (Xi,Yi,Zi),i1,2,3n,及平面方程 a x + b y + c z = d ( d ≥ 0 ) , a 2 + b 2 + c 2 = 1 ax + by + cz = d(d \geq 0), a^{2} + b^{2}+c^{2}=1 ax+by+cz=d(d0),a2+b2+c2=1,可得任意空间点到该平面的距离为:
d i = ∣ a x i + b y i + c z i − d ∣ d_{i} = |ax_{i} + by_{i} + cz_{i}-d| di=axi+byi+czid
要获得最优的平面,即所有空间点到该平面的距离最小:
d = min ⁡ ∑ n = 0 N d n 2 d =\min \sum^{N}_{n=0} d_{n}^{2} d=minn=0Ndn2
前提条件为 a 2 + b 2 + c 2 = 1 a^{2} + b^{2}+c^{2}=1 a2+b2+c2=1
因此构建误差函数:
f = ∑ n = 0 N ( d n 2 − λ ( a 2 + b 2 + c 2 ) f = \sum^{N}_{n=0}(d_{n}^{2} - \lambda(a^{2} + b^{2}+c^{2}) f=n=0N(dn2λ(a2+b2+c2)
————————————————————————————————————

求极值:
对参数a、b、c、d求偏导:
∂ f ∂ d = − 2 d n = − 2 ∗ ∑ n = 0 N ( a x n + b y n + c z n − d ) \frac{\partial f}{\partial d} = -2 d_{n} = -2 * \sum^{N}_{n=0}(ax_{n} + by_{n} + cz_{n}-d) df=2dn=2n=0N(axn+byn+cznd)
所以当 d = a ∑ n = 0 N X n n + b ∑ n = 0 N Y n n + c ∑ n = 0 N Z n n d=a \frac{ \sum^{N}_{n=0} X_{n}}{n} + b \frac{ \sum^{N}_{n=0} Y_{n}}{n} + c \frac{ \sum^{N}_{n=0} Z_{n}}{n} d=ann=0NXn+bnn=0NYn+cnn=0NZn
可以发现, ∑ n = 0 N X n n \frac{ \sum^{N}_{n=0} X_{n}}{n} nn=0NXn就是均值!
此时,距离d可以改写为:
d i = ∣ a x i + b y i + c z i − d ∣ = ∣ a ( X i − ∑ n = 0 N X n n ) + b ( Y i − ∑ n = 0 N Y n n ) + c ( Z i − ∑ n = 0 N Z n n ) ∣ = ∣ a ( X i − X ˉ ) + b ( Y i − Y ˉ ) + c ( Z i − Z ˉ ) ∣ \begin{aligned} d_{i} &= |ax_{i} + by_{i} + cz_{i}-d| \\ &= |a(X_{i} - \frac{ \sum^{N}_{n=0} X_{n}}{n} ) + b(Y_{i} - \frac{ \sum^{N}_{n=0} Y_{n}}{n} ) + c(Z_{i} - \frac{ \sum^{N}_{n=0} Z_{n}}{n} )| \\ &= |a (X_{i}-\bar{X}) + b (Y_{i}-\bar{Y}) + c (Z_{i}-\bar{Z})| \end{aligned} di=axi+byi+czid=a(Xinn=0NXn)+b(Yinn=0NYn)+c(Zinn=0NZn)=aXiXˉ)+bYiYˉ)+cZiZˉ)
继续对a求偏导可得:
∂ f ∂ a = 2 ∑ n = 0 N ( a ( X i − X ˉ ) + b ( Y i − Y ˉ ) + c ( Z i − Z ˉ ) ) ( X i − X ˉ ) − 2 λ a \frac{\partial f}{\partial a} = 2 \sum^{N}_{n=0}(a (X_{i}-\bar{X}) + b (Y_{i}-\bar{Y}) + c (Z_{i}-\bar{Z}))(X_{i}-\bar{X}) -2 \lambda a af=2n=0N(aXiXˉ)+bYiYˉ)+cZiZˉ))XiXˉ)2λa
△ X i = ( X i − X ˉ ) , △ Y i = ( Y i − Y ˉ ) , △ Z i = ( Z i − Z ˉ ) \triangle X_{i} =( X_{i}-\bar{X}),\triangle Y_{i} =( Y_{i}-\bar{Y}),\triangle Z_{i} =( Z_{i}-\bar{Z}) Xi=(XiXˉ),Yi=(YiYˉ),Zi=(ZiZˉ),则:
∂ f ∂ a = 2 ∑ n = 0 N ( a △ X i + b △ Y i + c △ Z i ) △ X i − 2 λ a = 0 \frac{\partial f}{\partial a} = 2 \sum^{N}_{n=0}(a \triangle X_{i} + b \triangle Y_{i} + c \triangle Z_{i})\triangle X_{i}-2 \lambda a = 0 af=2n=0N(aXi+bYi+cZi)Xi2λa=0
同理可得:
∂ f ∂ b = 2 ∑ n = 0 N ( a △ X i + b △ Y i + c △ Z i ) △ Y i − 2 λ b = 0 \frac{\partial f}{\partial b} = 2 \sum^{N}_{n=0}(a \triangle X_{i} + b \triangle Y_{i} + c \triangle Z_{i})\triangle Y_{i}-2 \lambda b = 0 bf=2n=0N(aXi+bYi+cZi)Yi2λb=0
∂ f ∂ c = 2 ∑ n = 0 N ( a △ X i + b △ Y i + c △ Z i ) △ Z i − 2 λ c = 0 \frac{\partial f}{\partial c} = 2 \sum^{N}_{n=0}(a \triangle X_{i} + b \triangle Y_{i} + c \triangle Z_{i})\triangle Z_{i}-2 \lambda c = 0 cf=2n=0N(aXi+bYi+cZi)Zi2λc=0
将三式整理成矩阵形式:
[ ∑ △ X i △ X i ∑ △ X i △ Y i ∑ △ X i △ Z i ∑ △ X i △ Y i ∑ △ Y i △ Y i ∑ △ Y i △ Z i ∑ △ X i △ Z i ∑ △ Y i △ Z i ∑ △ Z i △ Z i ] ⋅ [ a b c ] = λ ⋅ [ a b c ] \begin{bmatrix} \sum \triangle X_{i} \triangle X_{i} && \sum \triangle X_{i} \triangle Y_{i} && \sum \triangle X_{i} \triangle Z_{i} \\ \sum \triangle X_{i} \triangle Y_{i} && \sum \triangle Y_{i} \triangle Y_{i} && \sum \triangle Y_{i} \triangle Z_{i} \\ \sum \triangle X_{i} \triangle Z_{i} && \sum \triangle Y_{i} \triangle Z_{i} && \sum \triangle Z_{i} \triangle Z_{i} \end{bmatrix} \cdot \begin{bmatrix} a \\ b \\c \end{bmatrix} = \lambda \cdot \begin{bmatrix} a \\ b \\c \end{bmatrix} XiXiXiYiXiZiXiYiYiYiYiZiXiZiYiZiZiZiabc=λabc
这个式子就是矩阵的特征值与特征向量的定义式。最小特征值对应的特征向量即为满足条件 a 2 + b 2 + c 2 = 1 a^{2} + b^{2}+c^{2}=1 a2+b2+c2=1的解。

——————————————————
假设解为X = (a,b,c), a 2 + b 2 + c 2 = 1 a^{2} + b^{2}+c^{2}=1 a2+b2+c2=1。可以得 |X| = 1 ,又因为 A x = λ x Ax=\lambda x Ax=λx,因此
∣ ( A x , x ) ∣ = ∣ ( λ x , x ) ∣ = ∣ λ ( x , x ) ∣ = λ |(Ax,x)| =| (\lambda x,x)| = |\lambda (x,x)| = \lambda (Ax,x)=(λx,x)=λ(x,x)=λ
λ \lambda λ即为(Ax,x)的模长,求模长为:
( A x ) T ⋅ x = x T A T x = x T A x (Ax)^{T} \cdot x = x^{T} A^{T} x = x^{T}Ax (Ax)Tx=xTATx=xTAx
化简就可以得到:
λ = ∑ n = 0 N ( a △ X i + b △ Y i + c △ Z i ) 2 = ∑ n = 0 N d n 2 \lambda =\sum^{N}_{n=0}(a \triangle X_{i} + b \triangle Y_{i} + c \triangle Z_{i})^{2} = \sum^{N}_{n=0}d_{n}^{2} λ=n=0N(aXi+bYi+cZi)2=n=0Ndn2
所以求距离最小就变成了 λ \lambda λ最小,因此最小特征值对应的特征向量为平面的法向量。

其实我是这么理解的,矩阵中平面的法向量与平面上的所有向量的点乘积为0,也就是最不重要的那一部分。对应到特征值上,那就是最小特征值啦~~(个人见解)

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值