数据科学库学习第二节

一、绘制散点图

在这里插入图片描述

from matplotlib import pyplot as plt # 导入matplotlib模块中的 pyplot类,命名为 plt
from matplotlib import font_manager # 导入matplotlib模块中的 font_manager类,设置字体


a = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
b = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6]

T1 = range(1,32) # 3月份天数
T2 = range(32,63) # 5月份天数
T3 = list(T1) + list(T2)

# 字体设置
ziti = font_manager.FontProperties(fname=r"C:\Windows\Fonts\simhei.ttf",size=10)

# 设置图片大小dpi
plt.figure(figsize=(20,5),dpi=100)

# 各轴的描述信息
plt.xlabel("日期",fontproperties = ziti) # 由于字体太大会遮住x轴的描述信息
plt.ylabel("气温",fontproperties = ziti,rotation= 0) # 将y轴的描述信息的角度改为0,不然字体就会竖着显示
plt.title("3月份和10月份的气温变化图",fontproperties = ziti)

# 为了避免互相干涉所以刻意将两部分图给错开
plt.scatter(T1,a,label = "3月份") # 绘制散点图1(label给每条线加上标签)
plt.scatter(T2,b,label = "10月份") # 绘制散点图2(label给每条线加上标签)

# 设置每条线的标签(一定要在绘制的时候给每条线加上标签后再通过legend方式显示顺序不能反,否则会报错)
plt.legend(prop = ziti,loc = 2)

# 调整x轴显示
sy = ["3月{0}日".format(i) for i in T1]
sy += ["10月{0}日".format(i) for i in T1]
plt.xticks(T3[::3],sy[::3],fontproperties = ziti,rotation= -45)

# 保存
plt.savefig("./savefig.svg")

plt.show()

在这里插入图片描述
在这里插入图片描述

二、绘制条形统计图

1、绘制纵向条形图 bar

在这里插入图片描述

from matplotlib import pyplot as plt # 导入matplotlib模块中的 pyplot类,命名为 plt
from matplotlib import font_manager # 导入matplotlib模块中的 font_manager类,设置字体

dym = ["战狼2","速度与激情8","功夫瑜伽","西游伏魔篇","变形金刚5:\n最后的骑士","摔跤吧!\n爸爸","加勒比海盗5:\n死无对证","金刚:\n骷髅岛","极限特工:\n终极回归","生化危机6:\n终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:\n殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊"]
dyp = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23] # 单位:亿


# 字体设置
ziti = font_manager.FontProperties(fname=r"C:\Windows\Fonts\simhei.ttf",size=8)

# 设置图片大小dpi
plt.figure(figsize=(20,10),dpi=80)

# 绘制条形图
plt.bar(range(len(dym)),dyp)

# 调整x轴显示
plt.xticks(range(len(dym)),dym,fontproperties = ziti,rotation= 0)

# 保存
plt.savefig("./savefig.svg")

plt.show()

在这里插入图片描述

2、横向绘制条形统计图 barh
from matplotlib import pyplot as plt # 导入matplotlib模块中的 pyplot类,命名为 plt
from matplotlib import font_manager # 导入matplotlib模块中的 font_manager类,设置字体

dym = ["战狼2","速度与激情8","功夫瑜伽","西游伏魔篇","变形金刚5:\n最后的骑士","摔跤吧!\n爸爸","加勒比海盗5:\n死无对证","金刚:\n骷髅岛","极限特工:\n终极回归","生化危机6:\n终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:\n殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊"]
dyp = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23] # 单位:亿


# 字体设置
ziti = font_manager.FontProperties(fname=r"C:\Windows\Fonts\simhei.ttf",size=8)

# 设置图片大小dpi
plt.figure(figsize=(20,10),dpi=80)

# 绘制横向条形图
plt.barh(range(len(dym)),dyp,height=0.5)# 横向绘制的时候,height 改变条形图宽度

# 调整x轴显示
plt.yticks(range(len(dym)),dym,fontproperties = ziti,rotation= 0)

# 保存
plt.savefig("./savefig1.svg")

plt.show()

在这里插入图片描述
方法和纵向绘制基本相同,但要注意横向绘制时改变条形图宽度的时 width,而纵向绘制时改变宽度的是 height
在这里插入图片描述

from matplotlib import pyplot as plt # 导入matplotlib模块中的 pyplot类,命名为 plt
from matplotlib import font_manager # 导入matplotlib模块中的 font_manager类,设置字体

b_14 = [2358,399,2358,362] # 14号的票房
b_15 = [12357,156,2046,168] # 15号的票房
b_16 = [15746,312,4497,319] # 16号的票房
a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"] # 电影名
b = [i + 0.2 for i in range(4)] # 错开x轴的位置,避免重叠
c = [i + 0.4 for i in range(4)] # 错开x轴的位置,避免重叠


# 字体设置
ziti = font_manager.FontProperties(fname=r"C:\Windows\Fonts\simhei.ttf",size=12)

# 设置图片大小dpi
plt.figure(figsize=(20,10),dpi=80)

# 绘制纵向条形图
plt.bar(range(len(a)),b_14,width=0.2,label = "2017-09-14")
plt.bar(b,b_15,width=0.2,label = "2017-09-15")
plt.bar(c,b_16,width=0.2,label = "2017-09-16")

# 设置每条线的标签(一定要在绘制的时候给每条线加上标签后再通过legend方式显示顺序不能反,否则会报错)
plt.legend(prop = ziti,loc = 2)

# 调整x轴显示
plt.xticks(b ,a,fontproperties = ziti)

# 保存
plt.savefig("./savefig3.svg")

plt.show()

在这里插入图片描述

三、绘制直方图

生成250个随机数,看其中数字出现的频率

from matplotlib import pyplot as plt # 导入matplotlib模块中的 pyplot类,命名为 plt
from matplotlib import font_manager # 导入matplotlib模块中的 font_manager类,设置字体
import random

a = []

for i in range(251):
    a.append(random.randint(1,999))


# 组距
zj = 10

# 组数计算(极差/组距)
zs = (max(a) - min(a)) // zj
print(zs)

# 设置图片大小dpi
plt.figure(figsize=(20,10),dpi=80)

# 绘制直方图
plt.hist(a,zs)

# 调整x轴显示
plt.xticks(range(min(a),max(a),zj)[::2]) # 数字过于密集时可以进行切片操作

# 保存
plt.savefig("./savefig3.svg")

plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值