线性拟合2-正交回归


上一篇文章使用最小二乘法来拟合直线,有一个重要的缺点就是仅考虑了因变量 y y y存在误差的情况,但是很多情况下,原始点的横纵坐标都会有误差存在。

本文使用正交回归的方法,解决了最小二乘的两个缺点:

  1. 同时考虑了横纵坐标的误差;
  2. 使用点法式直线方程,能够表示二维平面上所有的点。

正交回归

正交方法能够同时考虑自变量 x x x和因变量 y y y的误差。正交回归将横纵坐标残差的平方和作为目标函数,来求得最优解。直观地理解,正交回归就是找到一条直线,使得点到直线的距离之和最小。
所以如果拟合点的横纵坐标都包含误差的情况下,使用正交回归能够得到更准确的结果。

目标函数

定义横坐标 x x x的真值为 x ⋆ x^{\star} x,估计值为 x ^ \hat{x} x^,则横坐标的误差和残差定义如下:
η i = x i − x i ⋆ \eta_i=x_i-x_i^{\star} ηi=xixi
η ^ i = x i − x ^ i \hat{\eta}_i=x_i-\hat{x}_i η^i=xix^i

要综合考虑横纵坐标的误差,得出的目标函数应该有如下形式:
J 2 = ∑ [ ( ϵ ^ i ) 2 + ( η ^ i ) 2 ] = ∑ [ ( y i − y ^ i ) 2 + ( x i − x ^ i ) 2 ] \begin{aligned} \bm{J}_2&=\sum[(\hat{\epsilon}_i)^2+(\hat{\eta}_i)^2] \\ &=\sum[(y_i-\hat{y}_i)^2+(x_i-\hat{x}_i)^2] \end{aligned} J2=[(ϵ^i)2+(η^i)2]=[(yiy^i)2+(xix^i)2]

因为要求目标函数的最小值,所以点 ( x ^ i , y ^ i ) (\hat{x}_i,\hat{y}_i) (x^i,y^i)应该是直线上到点 ( x i , y i ) (x_i,y_i) (xi,yi)距离最短的点,也就是第 i i i个点到直线的正交投影点。所以目标函数可以写成:
J 2 = ∑ d i 2 \bm{J}_2=\sum d_i^2 J2=di2

其中 d i d_i di为第 i i i个点 ( x i , y i ) (x_i,y_i) (xi,yi)到拟合直线的距离。

求解推导

上一篇文章中,最小二乘法使用斜截式直线方程的话,会有无法表示的直线,所以本文使用点法式直线方程。

用点法式直线方程的形式来表示拟合的直线 a ( x − x 0 ) + b ( y − y 0 ) = 0 a(x-x_0)+b(y-y_0)=0 a(xx0)+b(yy0)=0,其中 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)是直线经过的一个点的坐标, ( a , b ) (a,b) (a,b)为直线的法向量。因为向量仅表示一个方向,其长度我们并不关心,所以为了方便计算,我们采用直线的单位法向量来表示。所以有:
a 2 + b 2 = 1 a^2+b^2=1 a2+b2=1

i i i个点到直线的距离,可以表示为向量 ( x i − x 0 , y i − y 0 ) (x_i-x_0,y_i-y_0) (xix0,

  • 11
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值