Google Earth Engine ——世界200000冰川面积、几何形状、表面速度和雪线高程数据集

Global Land Ice Measurements from Space (GLIMS) is an international initiative with the goal of repeatedly surveying the world's estimated 200,000 glaciers.

The project seeks to create a globally comprehensive inventory of land ice, including measurements of glacier area, geometry, surface velocity, and snow line elevation. To perform these analyses, the GLIMS project uses satellite data, primarily from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Landsat Enhanced Thematic Mapper Plus (ETM+), as well as historical information derived from maps and aerial photographs.

Each feature in this dataset is a polygonal boundary of a glacier at the time of analysis. A few glacier IDs have hundreds of distinct rows over time.

This dataset is a snapshot of the inventory of glacier boundaries as of June 15, 2016, providing over 307,000 rows.

从太空进行全球陆地冰测量 (GLIMS) 是一项国际倡议,其目标是反复测量世界上估计有 200,000 座冰川。

该项目旨在创建一个全球综合的陆地冰清单,包括对冰川面积、几何形状、表面速度和雪线高程的测量。为了进行这些分析,GLIMS 项目使用了卫星数据,主要来自高级星载热辐射和反射辐射计 (ASTER) 和 Landsat Enhanced Thematic Mapper Plus (ETM+),以及从地图和航空照片中获得的历史信息。

此数据集中的每个要素都是分析时冰川的多边形边界。随着时间的推移,一些冰川 ID 具有数百个不同的行。

该数据集是截至 2016 年 6 月 15 日冰川边界清单的快照,提供超过 307,000 景。

Dataset Availability

2015-06-15T00:00:00 - 2015-06-16T00:00:00

Dataset Provider

National Snow and Ice Data Center (NSDIC)

Collection Snippet

ee.FeatureCollection("GLIMS/2016")

NameTypeDescription
analystsStringName(s) of data contributor(s)
anlys_idDoubleID of a glacier at a particular time
anlys_timeStringWhen the analysis was done
areaDoubleArea of the glacier in the plane of the map projection in square kilometers
chief_afflStringAffiliation of the chief of the regional center
db_areaDoubleSame as 'area', but recomputed by the GLIMS project
geog_areaStringName of geographic region covered by the regional center
glac_idStringThe GLIMS glacier ID
glac_nameStringThe glacier name. ~80% of the rows equal 'None'
glac_statStringGlacier status, either 'exists' or 'None'

影像

使用说明:

For the creation of any reports, publications, new data sets, derived products, or services resulting from the data set, users should cite: GLIMS and NSIDC (2005, updated 2013): Global Land Ice Measurements from Space glacier database. Compiled and made available by the international GLIMS community and the National Snow and Ice Data Center, Boulder CO, U.S.A., doi:10.7265/N5V98602https://doi.org/10.7265/N5V98602

代码:

var dataset = ee.FeatureCollection('GLIMS/2016');
var visParams = {
  palette: ['gray', 'cyan', 'blue'],
  min: 0.0,
  max: 10.0,
  opacity: 0.8,
};
var image = ee.Image().float().paint(dataset, 'area');
Map.setCenter(-26.763, 73.214, 6);
Map.addLayer(image, visParams, 'GLIMS/2016');
Map.addLayer(dataset, null, 'for Inspector', false);

<think>好的,用户的问题是关于是否仅使用地理高程数据地理影像数据来搭建山体的三维模型。我需要回顾之前的对话历史,确保回答的一致性。之前用户问的是地形高程数据影像图层叠加能否生成三维模型,我解释了Cesium中的情况,区分了连续地表模型独立模型的不同。现在用户的问题更具体,针对山体模型,可能想知道是否仅凭这两个数据源足够。 首先,用户可能不太清楚高程数据影像数据的具体作用,需要明确两者的角色。高程数据提供地形的高度信息,影像数据作为纹理贴图。我需要确认这两者的结合是否足以构建山体的三维模型,或者是否需要其他数据。 接着,用户可能想了解具体的步骤,比如如何将数据导入软件,如何处理,是否需要编程知识。可能需要分步骤解释流程,从数据准备到软件处理,再到最终导出模型,这样用户能有一个清晰的路线图。 另外,用户可能关心是否需要其他工具或技术,比如3D建模软件如Blender或GIS工具如QGIS。需要提到这些工具的使用,以及可能的自动化方法,如Cesium的代码示例,但也要考虑用户的技术背景,是否需要编程。 还要考虑用户可能的实际应用场景,比如地质研究、游戏开发或教育演示,不同的应用可能对模型精度细节有不同的要求,需要适当提及这些因素。 需要确保回答结构清晰,分点说明可行性、步骤、工具注意事项。同时,避免使用过于专业的术语,保持解释的易懂性。最后,总结关键点,帮助用户理解是否足够以及可能的扩展需求。</think>--- ### **简短回答** **可以搭建**。仅需高程数据(定义山体几何形状影像数据(提供地表纹理),即可生成基础的山体三维模型。以下是具体实现方法: --- ### **1. 数据准备** - **高程数据** - **格式**:DEM(数字高程模型,如GeoTIFF、TIN)或地形切片(如Cesium的Quantized-Mesh)。 - **精度要求**:根据需求选择分辨率(例如30米ASTER GDEM适用于宏观地形,1米LiDAR数据适合细节)。 - **影像数据** - **来源**:卫星影像(如Landsat、Sentinel)、航拍图或公开地图服务(如Google Maps)。 - **对齐校准**:确保影像坐标系(如WGS84)与高程数据完全匹配。 --- ### **2. 三维建模流程** #### **(1) 使用GIS软件生成基础模型** 通过QGIS、ArcGIS等工具将高程数据转换为3D网格: 1. **加载高程数据**:导入DEM文件(如`mountain.tif`)。 2. **生成三角网(TIN)**:将高程点转换为连续三角面片,构建山体表面。 3. **叠加影像纹理**:将地理影像贴图绑定到三角网表面,形成带纹理的山体模型。 4. **导出模型**:保存为通用3D格式(如OBJ、GLTF),方便后续编辑或展示。 #### **(2) 代码驱动建模(以Cesium为例)** 若需直接生成Web端三维地形,可使用以下代码: ```javascript const viewer = new Cesium.Viewer("cesiumContainer", { terrainProvider: Cesium.createWorldTerrain(), // 加载全球地形高程 }); // 叠加自定义影像(需替换为你的影像服务URL) viewer.imageryLayers.addImageryProvider( new Cesium.UrlTemplateImageryProvider({ url: "https://yourserver.com/{z}/{x}/{y}.png", }) ); // 定位到山体区域(示例坐标:富士山) viewer.camera.flyTo({ destination: Cesium.Cartesian3.fromDegrees(138.7278, 35.3606, 5000), }); ``` #### **(3) 精细后处理(可选)** - **Blender修饰**:导入OBJ模型后,可手动调整网格、增强细节(如添加岩石裂缝)。 - **Shader增强**:在Unity/Unreal引擎中通过法线贴图模拟岩石质感。 --- ### **3. 关键注意事项** | 问题类型 | 解决方案 | |-------------------|--------------------------------------------------------------------------| | **数据对齐偏差** | 使用GIS软件校正影像与高程的投影坐标系(如EPSG:4326) | | **模型边缘锯齿** | 在Blender中启用“平滑着色”或增加三角网密度 | | **纹理模糊** | 使用更高分辨率影像,或通过超分辨率算法(如ESRGAN)提升清晰度 | | **性能优化** | 对大规模地形使用LOD(多级细节)技术,或转换为3D Tiles格式 | --- ### **4. 效果示例** - **基础模型**:高程+影像可还原山体宏观形态(如坡度、峰谷走向)。 - **进阶效果**: - 叠加坡度分析图,用颜色区分陡峭/平缓区域。 - 添加动态效果(如雪线随海拔渐变、植被随风摆动)。 --- ### **5. 扩展能力** 若需更高真实感,可补充以下数据: - **侧面纹理**:通过无人机拍摄山体立面照片,补充模型侧面贴图。 - **植被点云**:LiDAR数据生成树木三维分布。 - **地质属性**:岩性分类数据驱动不同材质的着色(如花岗岩 vs 沉积岩)。 --- ### **总结** - **基础需求**:仅凭高程+影像即可生成山体三维模型,适用于地形分析、可视化演示。 - **高真实感需求**:需补充立面纹理、点云细节或物理材质。 - **工具推荐**:QGIS/Blender快速入门,Cesium/Unreal满足专业级交互需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值