Google Earth Engine ——全球 25m PALSAR/PALSAR-2数据集

该全球25米分辨率的PALSAR/PALSAR-2合成孔径雷达(SAR)影像集由日本宇宙航空研究开发机构(JAXA)提供,覆盖2007年至2021年。此数据集通过正射校正和斜率校正,并应用了去条纹处理以均衡相邻条带间的强度差异。数据包含HH和HV偏振反向散射系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The global 25m PALSAR/PALSAR-2 mosaic is a seamless global SAR image created by mosaicking strips of SAR imagery from PALSAR/PALSAR-2. For each year and location, the strip data were selected through visual inspection of the browse mosaics available over the period, with those showing minimum response to surface moisture preferentially used. In cases where the availability was limited (e.g., because of the requirement for observations during specific emergencies), data were necessarily selected from the year before or after, including from 2006. Shimada et al. 2014

The SAR imagery was ortho-rectificatied and slope corrected using the 90m SRTM Digital Elevation Model. A destriping process (Shimada & Isoguchi, 2002, 2010) was applied to equalize the intensity differences between neighboring strips, occurring largely due to seasonal and daily differences in surface moisture conditions.

Polarization data are stored as 16-bit digital numbers (DN). The DN values can be converted to gamma naught values in decibel unit (dB) using the following equation:

  • γ₀ = 10log₁₀(DN²) - 83.0 dB

Attention:

  • Backscatter values may vary significantly from path to path over high latitude forest areas. This is due to the change of backscattering intensity caused by freezing trees in winter.
全球 25m PALSAR/PALSAR-2 拼接图是由 PALSAR/PALSAR-2 的 SAR 影像条带拼接而成的无缝全球 SAR 影像。对于每一年和地点,条带数据是通过目视检查这段时间内可用的浏览马赛克来选择的,优先使用那些对表面水分反应最小的那些。在可用性有限的情况下(例如,由于需要在特定紧急情况下进行观察),必须从前一年或后一年中选择数据,包括 2006 年。 Shimada 等。 2014年

使用 90m SRTM 数字高程模型对 SAR 图像进行正射校正和斜率校正。去除条纹过程 (Shimada & Isoguchi, 2002, 2010) 用于平衡相邻条纹之间的强度差异,这主要是由于表面水分条件的季节性和日常差异造成的。

偏振数据存储为 16 位数字 (DN)。可以使用以下等式将 DN 值转换为以分贝为单位 (dB) 的伽马零值:

γ₀ = 10log₁₀(DN²) - 83.0 dB
注意力:

在高纬度森林地区,不同路径的反向散射值可能会有很大差异。这是由于冬季树木结冰引起后向散射强度的变化。

Dataset Availability

2007-01-01T00:00:00 - 2021-01-01T00:00:00

Dataset Provider

JAXA EORC

Collection Snippet

Copied

ee.ImageCollection("JAXA/ALOS/PALSAR/YEARLY/SAR")

Resolution

25 meters

Bands Table

NameDescription
HHHH polarization backscattering coefficient, 16-bit DN.
HVHV polarization backscattering coefficient, 16-bit DN.
angleLocal incidence angle (degrees).
dateObservation date (days since Jan 1, 1970).
qaProcessing information.

Class Table: qa

ValueColorColor ValueDescription
0#000000No data
50#0000FFOcean and water
100#AAAA00Radar layover
150#005555Radar shadowing
255#AA9988Land

 数据说明:JAXA retains ownership of the dataset and cannot guarantee any problem caused by or possibly caused by using the datasets. Anyone wishing to publish any results using the datasets should clearly acknowledge the ownership of the data in the publication. 

引用:

Masanobu Shimada, Takuya Itoh, Takeshi Motooka, Manabu Watanabe, Shiraishi Tomohiro, Rajesh Thapa, and Richard Lucas, "New Global Forest/Non-forest Maps from ALOS PALSAR Data (2007-2010)", Remote Sensing of Environment, 155, pp. 13-31, December 2014. doi:10.1016/j.rse.2014.04.014.

代码:

var dataset = ee.ImageCollection('JAXA/ALOS/PALSAR/YEARLY/SAR')
                  .filter(ee.Filter.date('2017-01-01', '2018-01-01'));
var sarHh = dataset.select('HH');
var sarHhVis = {
  min: 0.0,
  max: 10000.0,
};
Map.setCenter(136.85, 37.37, 4);
Map.addLayer(sarHh, sarHhVis, 'SAR HH');

<think>嗯,用户想通过Google Earth Engine (GEE) 获取和处理ALOS-2数据。首先,我需要确认GEE是否支持ALOS-2数据集。记得ALOS是日本的卫星,分为ALOS-1和ALOS-2,后者是SAR卫星,主要用于地形和灾害监测。根据之前的知识,GEE的数据目录里可能有ALOS的数据,但不确定具体是哪个版本。 接下来,用户需要知道如何通过GEE API访问这些数据。通常步骤包括在GEE平台上搜索数据集,找到对应的ImageCollection ID,然后编写代码进行预处理和导出。比如,可能需要加载数据集,筛选时间、区域,调整参数如极化方式(HH、HV等),然后应用滤波处理减少噪声,比如使用Lee滤波器。 另外,用户可能不熟悉SAR数据的处理步骤,比如辐射定标、地形校正等,这些在光学数据中不太常见。需要提醒用户注意这些步骤,或者确认GEE是否已经预处理了这些数据。此外,下载数据可能需要导出到Google Drive或Google Cloud Storage,然后从那里下载到本地。 还要检查是否有相关的引用资料提到ALOS-2在GEE中的可用性。例如,引用[4]提到ESA-USGS平台还在开发,但GEE可能有其他来源。可能需要参考GEE的官方文档或社区论坛,看看其他用户有没有分享过相关经验。 最后,用户可能还需要知道如何处理下载后的数据,比如使用Rasterio(引用[2]提到的库)进行后续的地理空间处理。可能需要给出一个完整的代码示例,涵盖从数据加载到导出的全过程,并提醒常见的注意事项,比如权限问题、处理时间、配额限制等。</think>### Google Earth Engine (GEE) 下载和处理 ALOS-2 数据的步骤 #### 1. **确认数据可用性** - ALOS-2(Advanced Land Observing Satellite-2)是日本宇宙航空研究开发机构(JAXA)的合成孔径雷达(SAR)卫星。目前**GEE官方数据集暂未直接集成ALOS-2数据**,但可通过以下方式获取: - 若数据已上传至GEE资产库,需申请访问权限并加载为`ImageCollection`[^4] - 使用第三方预处理数据(如已公开的GeoTIFF格式数据) #### 2. **数据加载与筛选** ```javascript // 示例代码(假设数据集ID为'JAXA/ALOS2/PALSAR-2/LEVEL2_2') var collection = ee.ImageCollection('JAXA/ALOS2/PALSAR-2/LEVEL2_2') .filterDate('2020-01-01', '2020-12-31') .filterBounds(geometry); // geometry为感兴趣区域 ``` #### 3. **关键参数处理** - SAR数据需关注参数: ```javascript var image = collection.first(); var hh = image.select('HH'); // 水平发射-水平接收极化 var hv = image.select('HV'); // 水平发射-垂直接收极化 ``` - **辐射定标**与**地形校正**通常需手动实现(若原始数据未预处理) #### 4. **噪声滤波处理** ```javascript // 使用Lee滤波器减少斑点噪声 var leeFiltered = image.reduceNeighborhood({ reducer: ee.Reducer.lee(), kernel: ee.Kernel.square(3) }); ``` #### 5. **数据导出** ```javascript Export.image.toDrive({ image: leeFiltered, description: 'ALOS2_Export', region: geometry, scale: 10, // 分辨率 maxPixels: 1e13 }); ``` #### 6. **本地处理(Python示例)** ```python import rasterio # 读取下载的TIFF文件 with rasterio.open('ALOS2_Export.tif') as src: data = src.read() profile = src.profile # 执行NDVI计算或其他分析(需转换为反射率) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值