GEE问题:Landsat 5中加载地表温度LST中出现条带的问题,可用Landsat 7替代解决

出问题的代码

var dilla = 
    /* color: #d63000 */
    /* displayProperties: [
      {
        "type": "rectangle"
      }
    ] */
    ee.Geometry.Polygon(
        [[[38.254541444997685, 6.439644057500407],
          [38.254541444997685, 6.363048650606914],
          [38.34329037688245, 6.363048650606914],
          [38.34329037688245, 6.439644057500407]]], null, false);
var landsat5 = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2')
  .filterBounds(dilla)
  .filterDate('2002-01-01', '2002-08-25')
  .filter(ee.Filter.lt('CLOUD_COVER', 50));

function calculateLST_L5(image) {
   
  var lstKelvin = image.select('ST_B6').multiply(0.00341802).add(149.0);
  var lstCelsius = lstKelvin.subtract(273.15);
  return lstCelsius.clip(dilla).rename('LST');
}

var lstCollecti
<think>好的,我现在需要帮助用户解决如何利用Google Earth Engine (GEE) 和 Landsat 8 数据集进行夏季多年连续的地表温度反演的问题。首先,我得回顾用户提供的引用内容和具体要求。 用户提到了两篇引用,其中引用[1]提到GEE可以用来计算LandsatLST,但需要自己处理数据,而引用[2]则指出代码中需要替换的部分和参数获取的方法。用户的需求是进行夏季多年连续数据分析,所以需要确保时间范围覆盖多年,并且只选择夏季的影像。 首先,我应该考虑数据准备阶段。Landsat 8数据在GEE中的数据集是LANDSAT/LC08/C02/T1_L2,所以需要先加载这个数据集。然后,用户需要过滤数据的时间范围,比如从2013年至今,并且选择夏季的月份,比如6、7、8月。同时,还需要过滤云量,使用QA_PIXEL波段来去除云覆盖较多的影像,这可能需要使用maskL8sr函数。 接下来是地表温度反演的核心算法。单通道算法(SC算法)需要大气透过率、大气平均作用温度和水汽含量这三个参数。用户需要从NASA的网站或者其他可靠来源获取这些参数,或者根据研究区域的经验公式估算。例如,大气水汽含量可能与季节和地理位置相关,可能需要用户自行查找或使用气象数据辅助计算。 然后是辐射定标和地表比辐射率计算。辐射定标涉及到将DN值转换为大气表观反射率和辐射亮度。地表比辐射率可能根据NDVI的不同阈值进行计算,比如当NDVI大于0.5时认为是植被覆盖,小于0.2时为裸土,介于之间则用线性模型。这需要计算NDVI,并根据阈值设置不同的比辐射率值。 接着是亮温计算和地表温度反演。亮温计算需要热红外波段的辐射亮度和定标参数,使用普朗克公式的反函数。而地表温度则需要考虑地表比辐射率进行校正,可能需要使用特定的公式,例如SC算法中的公式。 在代码实现部分,用户需要定义一个函数来处理每个影像,包括辐射定标、NDVI计算、比辐射率计算、亮温和LST计算。然后,映射这个函数到整个影像集合,生成时间序列的数据。最后,导出结果或进行可视化。 用户可能遇到的问题包括如何获取大气参数,如何处理不同年份的数据一致性,以及如何验证反演结果的准确性。此外,代码中的filter过滤和geometry设置可能需要用户根据自己的研究区域进行调整,比如指定中心经纬度或者区域边界。 最后,用户可能需要生成时间序列的图表或统计结果,以分析夏季地表温度的变化趋势。这部分可能需要使用GEE的ui.Chart函数来展示多年数据的变化。 总结步骤应该是:数据准备→参数获取→辐射定标→比辐射率计算→亮温计算→LST反演→时间序列分析→结果导出与可视化。需要确保每个步骤的代码正确,并且参数替换正确,同时处理云掩膜和季节筛选,以保证数据质量。</think>以下是通过Google Earth Engine (GEE) 和 Landsat 8 实现夏季多年连续地表温度反演的分步解决方案: --- ### **1. 数据准备与预处理** #### 1.1 加载Landsat 8数据集 ```javascript var landsat8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2013-01-01', '2023-12-31') // 根据需求调整年份范围 .filter(ee.Filter.calendarRange(6, 8, 'month')) // 筛选夏季(6-8月) .map(maskL8sr); // 云掩膜处理 ``` #### 1.2 云掩膜函数 ```javascript function maskL8sr(image) { var qaMask = image.select('QA_PIXEL').bitwiseAnd(0b1111).eq(0); return image.updateMask(qaMask); } ``` --- ### **2. 地表温度反演算法(单通道算法SC)** $$ T_s = \frac{K_2}{\ln\left(\frac{K_1}{L_\lambda} + 1\right)} - 273.15 $$ 其中$L_\lambda$为热红外波段辐射亮度,$K_1=774.89$、$K_2=1321.08$为Landsat 8定标常数[^1]。 --- ### **3. 关键参数计算** #### 3.1 大气参数设置(需从NASA获取) ```javascript // 示例参数(需替换实际值) var tau = 0.8; // 大气透过率 var T_a = 295; // 大气平均作用温度 var w = 1.5; // 大气水汽含量(g/cm²) ``` #### 3.2 辐射定标 ```javascript var radiance = image.select('ST_B10').multiply(0.00341802).add(149.0); ``` #### 3.3 地表比辐射率(ε)计算 ```javascript var ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI'); var epsilon = ee.Image(0.004).multiply(ndvi).add(0.986); // 经验公式 ``` --- ### **4. 完整代码实现** ```javascript function calculateLST(image) { // 辐射定标 var rad = image.select('ST_B10').multiply(0.00341802).add(149.0); // 计算NDVI与比辐射率 var ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']); var epsilon = ndvi.gt(0.5).multiply(0.99) .add(ndvi.lt(0.2).multiply(0.96)) .add(ndvi.gte(0.2).and(ndvi.lte(0.5)).multiply(ndvi.subtract(0.2).multiply(0.03).add(0.96))); // 亮温计算 var BT = rad.divide(epsilon).divide(tau).add(1 - epsilon).multiply(T_a).log(); var LST = ee.Image(1321.08).divide(BT).subtract(273.15); return image.addBands(LST.rename('LST')); } var LST_collection = landsat8.map(calculateLST); ``` --- ### **5. 时间序列分析** ```javascript // 生成时间序列图表 var chart = ui.Chart.image.series({ imageCollection: LST_collection.select('LST'), region: geometry, // 替换为研究区域 reducer: ee.Reducer.mean(), scale: 30 }); print(chart); ``` --- ### **
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值