Google Earth Engine——NOAA/GOES/16/和17/MCMIPF地球静止气象卫星云层和水分图像产品的(分辨率都是2公里)

这篇内容介绍了NOAA的GOES地球静止气象卫星提供的云层和水分图像产品,包括不同波段的分辨率、反射和发射特性,以及用于数据质量评估的标志。数据涵盖了2017年到2021年间,可用于云、植被、雪/冰、气溶胶和大气条件的监测。此外,还提供了代码示例,展示如何处理和可视化GOES-16和GOES-17的数据。
摘要由CSDN通过智能技术生成

GOEShttps://www.goes.noaa.gov/ satellites are geostationary weather satellites run by NOAA.

The Cloud and Moisture Imagery products are all at 2km resolution. Bands 1-6 are reflective. The dimensionless "reflectance factor" quantity is normalized by the solar zenith angle. These bands support the characterization of clouds, vegetation, snow/ice, and aerosols. Bands 7-16 are emissive. The brightness temperature at the Top-Of-Atmosphere (TOA) is measured in Kelvin. These bands support the characterization of the surface, clouds, water vapor, ozone, volcanic ash, and dust based on emissive properties.

README

GOES卫星是由NOAA管理的地球静止气象卫星。

云层和水分图像产品的分辨率都是2公里。1-6波段是反射的。无尺寸的 "反射系数 "数量是以太阳天顶角为标准的。这些波段支持云、植被、雪/冰和气溶胶的特征。频段7-16是发射型的。大气层顶部(TOA)的亮度温度以开尔文测量。这些波段支持根据发射特性对地表、云层、水汽、臭氧、火山灰和灰尘进行定性。

阅读提示

Dataset Availability

2017-07-10T00:00:00 - 2021-09-30T00:00:00

Dataset Provider

NOAA

Collection Snippet

Copied

ee.ImageCollection("NOAA/GOES/16/MCMIPF")

Resolution

2000 meters

Bands Table

NameDescriptionMinMaxUnitsWavelength
CMI_C01Visible - Blue Daytime aerosol over land, coastal water mapping.01.3Reflectance factor0.45-0.49µm
DQF_C01Data quality flags04
CMI_C02Visible - Red Daytime clouds, fog, insolation, winds01.3Reflectance factor0.59-0.69µm
DQF_C02Data quality flags04
CMI_C03Near-IR - Veggie Daytime vegetation, burn scar, aerosol over water, winds01.3Reflectance factor0.846-0.885µm
DQF_C03Data quality flags04
CMI_C04Near-IR - Cirrus Daytime cirrus cloud01.3Reflectance factor1.371-1.386µm
DQF_C04Data quality flags04
CMI_C05Near-IR - Snow/Ice Daytime cloud-top phase and particle size, snow01.3Reflectance factor1.58-1.64µm
DQF_C05Data quality flags04
CMI_C06Near IR - Cloud Particle Size Daytime land, cloud properties, particle size, vegetation, snow01.3Reflectance factor2.225-2.275µm
DQF_C06Data quality flags04
CMI_C07Infrared - Shortwave Window Brightness197.31411.86K3.80-4.00µm
DQF_C07Data quality flags04
CMI_C08Infrared - Upper-level water vapor High-level atmospheric water vapor, winds, rainfall Brightness138.05311.06K5.77-6.6µm
DQF_C08Data quality flags04
CMI_C09Infrared - Mid-level water vapor Mid-level atmospheric water vapor, winds, rainfall Brightness137.7311.08K6.75-7.15µm
DQF_C09Data quality flags04
CMI_C10Infrared - Lower-level water vapor Lower-level water vapor, winds, and sulfur dioxide Brightness126.91331.2K7.24-7.44µm
DQF_C10Data quality flags04
CMI_C11Infrared - Cloud-top phase Total water for stability, cloud phase, dust, sulfur dioxide, rainfall Brightness127.69341.3K8.3-8.7µm
DQF_C11Data quality flags04
CMI_C12Infrared - Ozone Total ozone, turbulence, winds117.49311.06K9.42-9.8µm
DQF_C12Data quality flags04
CMI_C13Infrared - \"Clean\" longwave window Surface and clouds Brightness89.62341.27K10.1-10.6µm
DQF_C13Data quality flags04
CMI_C14Infrared - Longwave window Imagery, sea surface temperature, clouds, rainfall Brightness96.19341.28K10.8-11.6µm
DQF_C14Data quality flags04
CMI_C15Infrared \"Dirty\" longwave Total water, volcanic ash, sea surface temperature Brightness97.38341.28K11.8-12.8µm
DQF_C15Data quality flags04
CMI_C16Infrared - CO_2 longwave Air temperature, cloud heights Brightness92.7318.26K13.0-13.6µm
DQF_C16Data quality flags04

Class Table: DQF_C01

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C02

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C03

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffff

No value pixels

4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C04

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C05

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C06

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C07

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C08

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C09

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C10

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C11

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C12

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C13

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C14

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C15

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

Class Table: DQF_C16

ValueColorColor ValueDescription
0#ffffffGood pixels
1#ff00ffConditionally usable pixels
2#0000ffOut of range pixels
3#00ffffNo value pixels
4#ffff00Focal plane temperature threshold exceeded

影像属性:

NameTypeDescription
CMI_C01_offsetDoubleOffset to add to scaled CMI_C01 values
CMI_C01_scaleDoubleScale to multiply with raw CMI_C01 values
CMI_C02_offsetDoubleOffset to add to scaled CMI_C02 values
CMI_C02_scaleDoubleScale to multiply with raw CMI_C02 values
CMI_C03_offsetDoubleOffset to add to scaled CMI_C03 values
CMI_C03_scaleDoubleScale to multiply with raw CMI_C03 values
CMI_C04_offsetDoubleOffset to add to scaled CMI_C04 values
CMI_C04_scaleDoubleScale to multiply with raw CMI_C04 values
CMI_C05_offsetDoubleOffset to add to scaled CMI_C05 values
CMI_C05_scaleDoubleScale to multiply with raw CMI_C05 values
CMI_C06_offsetDoubleOffset to add to scaled CMI_C06 values
CMI_C06_scaleDoubleScale to multiply with raw CMI_C06 values
CMI_C07_offsetDoubleOffset to add to scaled CMI_C07 values
CMI_C07_scaleDoubleScale to multiply with raw CMI_C07 values
CMI_C08_offsetDoubleOffset to add to scaled CMI_C08 values
CMI_C08_scaleDoubleScale to multiply with raw CMI_C08 values
CMI_C09_offsetDoubleOffset to add to scaled CMI_C09 values
CMI_C09_scaleDoubleScale to multiply with raw CMI_C09 values
CMI_C10_offsetDoubleOffset to add to scaled CMI_C10 values
CMI_C10_scaleDoubleScale to multiply with raw CMI_C10 values
CMI_C11_offsetDoubleOffset to add to scaled CMI_C11 values
CMI_C11_scaleDoubleScale to multiply with raw CMI_C11 values
CMI_C12_offsetDoubleOffset to add to scaled CMI_C12 values
CMI_C12_scaleDoubleScale to multiply with raw CMI_C12 values
CMI_C13_offsetDoubleOffset to add to scaled CMI_C13 values
CMI_C13_scaleDoubleScale to multiply with raw CMI_C13 values
CMI_C14_offsetDoubleOffset to add to scaled CMI_C14 values
CMI_C14_scaleDoubleScale to multiply with raw CMI_C14 values
CMI_C15_offsetDoubleOffset to add to scaled CMI_C15 values
CMI_C15_scaleDoubleScale to multiply with raw CMI_C15 values
CMI_C16_offsetDoubleOffset to add to scaled CMI_C16 values
CMI_C16_scaleDoubleScale to multiply with raw CMI_C16 values

 使用说明:

NOAA data, information, and products, regardless of the method of delivery, are not subject to copyright and carry no restrictions on their subsequent use by the public. Once obtained, they may be put to any lawful use.

数据引用:

Bah, Gunshor, Schmit, Generation of GOES-16 True Color Imagery without a Green Band, 2018. doi:10.1029/2018EA000379

Product User Guide (PUG) Volume 5, L2+ Products.

Schmit, T., Griffith, P., et al, (2016), A closer look at the ABI on the GOES-R series, Bull. Amer. Meteor. Soc., 98(4), 681-698. 

代码:

// Band aliases.
var BLUE = 'CMI_C01';
var RED = 'CMI_C02';
var VEGGIE = 'CMI_C03';
var GREEN = 'GREEN';
// 16 pairs of CMI and DQF followed by Bah 2018 synthetic green.
// Band numbers in the EE asset, 0-based.
var NUM_BANDS = 33;
// Skipping the interleaved DQF bands.
var BLUE_BAND_INDEX = (1 - 1) * 2;
var RED_BAND_INDEX = (2 - 1) * 2;
var VEGGIE_BAND_INDEX = (3 - 1) * 2;
var GREEN_BAND_INDEX = NUM_BANDS - 1;

// Visualization range for GOES RGB.
var GOES_MIN = 0.0;
var GOES_MAX = 0.7;  // Alternatively 1.0 or 1.3.
var GAMMA = 1.3;

var goesRgbViz = {
  bands: [RED, GREEN, BLUE],
  min: GOES_MIN,
  max: GOES_MAX,
  gamma: GAMMA
};

var applyScaleAndOffset = function(image) {
  image = ee.Image(image);
  var bands = new Array(NUM_BANDS);
  for (var i = 1; i < 17; i++) {
    var bandName = 'CMI_C' + (100 + i + '').slice(-2);
    var offset = ee.Number(image.get(bandName + '_offset'));
    var scale =  ee.Number(image.get(bandName + '_scale'));
    bands[(i-1) * 2] = image.select(bandName).multiply(scale).add(offset);

    var dqfName = 'DQF_C' + (100 + i + '').slice(-2);
    bands[(i-1) * 2 + 1] = image.select(dqfName);
  }

  // Bah, Gunshor, Schmit, Generation of GOES-16 True Color Imagery without a
  // Green Band, 2018. https://doi.org/10.1029/2018EA000379
  // Green = 0.45 * Red + 0.10 * NIR + 0.45 * Blue
  var green1 = bands[RED_BAND_INDEX].multiply(0.45);
  var green2 = bands[VEGGIE_BAND_INDEX].multiply(0.10);
  var green3 = bands[BLUE_BAND_INDEX].multiply(0.45);
  var green = green1.add(green2).add(green3);
  bands[GREEN_BAND_INDEX] = green.rename(GREEN);

  return ee.Image(ee.Image(bands).copyProperties(image, image.propertyNames()));
};

var collection = 'NOAA/GOES/16/MCMIPF/';
var imageName = '2020210184019900000';
var assetId = collection + imageName;
var image = applyScaleAndOffset(assetId);
Map.addLayer(image, goesRgbViz);

 代码:

// Band aliases.
var BLUE = 'CMI_C01';
var RED = 'CMI_C02';
var VEGGIE = 'CMI_C03';
var GREEN = 'GREEN';
// 16 pairs of CMI and DQF followed by Bah 2018 synthetic green.
// Band numbers in the EE asset, 0-based.
var NUM_BANDS = 33;
// Skipping the interleaved DQF bands.
var BLUE_BAND_INDEX = (1 - 1) * 2;
var RED_BAND_INDEX = (2 - 1) * 2;
var VEGGIE_BAND_INDEX = (3 - 1) * 2;
var GREEN_BAND_INDEX = NUM_BANDS - 1;

// Visualization range for GOES RGB.
var GOES_MIN = 0.0;
var GOES_MAX = 0.7;  // Alternatively 1.0 or 1.3.
var GAMMA = 1.3;

var goesRgbViz = {
  bands: [RED, GREEN, BLUE],
  min: GOES_MIN,
  max: GOES_MAX,
  gamma: GAMMA
};

var applyScaleAndOffset = function(image) {
  image = ee.Image(image);
  var bands = new Array(NUM_BANDS);
  for (var i = 1; i < 17; i++) {
    var bandName = 'CMI_C' + (100 + i + '').slice(-2);
    var offset = ee.Number(image.get(bandName + '_offset'));
    var scale =  ee.Number(image.get(bandName + '_scale'));
    bands[(i-1) * 2] = image.select(bandName).multiply(scale).add(offset);

    var dqfName = 'DQF_C' + (100 + i + '').slice(-2);
    bands[(i-1) * 2 + 1] = image.select(dqfName);
  }

  // Bah, Gunshor, Schmit, Generation of GOES-16 True Color Imagery without a
  // Green Band, 2018. https://doi.org/10.1029/2018EA000379
  // Green = 0.45 * Red + 0.10 * NIR + 0.45 * Blue
  var green1 = bands[RED_BAND_INDEX].multiply(0.45);
  var green2 = bands[VEGGIE_BAND_INDEX].multiply(0.10);
  var green3 = bands[BLUE_BAND_INDEX].multiply(0.45);
  var green = green1.add(green2).add(green3);
  bands[GREEN_BAND_INDEX] = green.rename(GREEN);

  return ee.Image(ee.Image(bands).copyProperties(image, image.propertyNames()));
};

var collection = 'NOAA/GOES/17/MCMIPC/';
var imageName = '2020211190617600000';
var assetId = collection + imageName;
var image = applyScaleAndOffset(assetId);
Map.addLayer(image, goesRgbViz);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值