Google Earth Engine(GEE)——使用机器学习进行金三角大米分布图

本文指导如何通过Google Earth Engine (GEE)结合机器学习技术,分析并展示金三角地区的大米分布情况。首先在GEE代码编辑器中导入数据,接着过滤并可视化大米和非大米数据,然后进行区域复合采样用于训练,最后利用随机森林算法进行训练,并在地图上展示分类结果。
摘要由CSDN通过智能技术生成

第 1 步:转到https://code.earthengine.google.com/打开代码编辑器

第 2 步:使用以下代码从 Google Earth Engine Asset 导入数据

// 导入影像集合
var composites = ee.ImageCollection("projects/servir-mekong/yearlyComposites");
// 导入训练数据
var data = ee.FeatureCollection("projects/servir-mekong/referenceData/riceTraining");
// 导入矢量边界数据
var cambodia = ee.FeatureCollection("projects/servir-mekong/referenceData/cam_adm");

 第 3 步:从训练数据集中过滤大米和非大米数据以进行可视化并将图层添加到地图

// 选择有大米区域和没有的区域
var rice = data.filter(
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值