Google Earth Engine(GEE)——10种不同机器学习方法下的土地分类分析

本文介绍了如何使用Google Earth Engine(GEE)进行土地分类,涉及监督学习方法如支持向量机(SVM)和分类与回归树(CART)。文章详细阐述了从数据收集、预处理、模型训练到结果分析的全过程,并讨论了不同机器学习算法的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习是一种人工智能方法,它可以让计算机自动地从数据中学习和改善自身的性能。机器学习方法主要包括以下几种:

  1. 监督学习:从已知的数据中学习并预测新的数据。主要的方法包括回归和分类。

  2. 无监督学习:从未知的数据中学习并提取有用的信息。主要的方法包括聚类和降维。

  3. 半监督学习:结合监督和无监督方法的学习方法,适用于有限的标记数据和大量未标记数据的情况。

  4. 强化学习:学习如何在特定环境中最大化奖励的技术,通常应用于游戏、机器人和交通等领域。

  5. 深度学习:通过多层的神经网络进行学习,适用于图像、语音、自然语言处理等领域。

以上是机器学习的一些常见方法,具体应用需要根据具体问题进行选择。

在GEE中,可以使用机器学习方法进行土地分类。以下是一些实现步骤:

  1. 收集地面真实数据:使用地面调查、遥感数据或已有分类结果等方式,收集针对所研究区域的真实土地类型数据。

  2. 数据准备:在GEE中导入真实土地类型数据和相应的遥感数据,包括多光谱或高分辨率遥感数据等。然后,对数据进行预处理,如云去除、波段选择、归一化等。

  3. 数据分割:将数据分成训练集和验证集。训练集用于训练模型,验证集用于测试模型的准确

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值