GEE案例分析——利用sentinel-3数据计算空气污染指数(Air Pollution Index,简称API)

本文通过Sentinel-3卫星数据,介绍如何计算空气污染指数(API),并探讨了API在衡量空气质量中的作用。Sentinel-3是ESA的地球观测卫星,数据广泛应用于气候变化监测和环境保护。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

空气污染指数

空气污染指数(Air Pollution Index,简称API)是用来衡量空气质量的一种指数,它反映了空气中污染物质浓度对人体健康的影响程度。API的计算结果一般以数字表示,数值越高则表示空气质量越差,对人体健康的危害也就越大。各国和地区计算API的标准不尽相同,但常见的污染物质包括颗粒物(PM10和PM2.5)、臭氧、二氧化硫、二氧化氮等主要空气污染物。在中国,API分为六级,从优到劣依次为:优、良、轻度污染、中度污染、重度污染、严重污染。

空气污染指数(Air Pollution Index, API)是一种用于衡量空气质量的指标。API的计算基于监测到的空气污染物浓度和其对人体健康的危害程度,各地的具体计算公式可能略有不同,通常如下:

API = (C/Ip) × K

其中:

C为监测到的污染物浓度,单位为mg/m³(或ppm)。

Ip为该污染物的国家标准限值,单位为mg/m³(或ppm)。

K为污染物的权重系数,根据不同污染物而异。

对于多种污染物同时存在的情况,API可按照以下公式计算:

API = Max{API1, API2, ..., APIn}

其中,Max为取最大值函数&

### 使用 Sentinel-1 和 Sentinel-2 数据进行土地覆盖变化监测 #### 方法概述 土地覆盖变化监测可以通过综合使用 Sentinel-1 的雷达数据Sentinel-2 的光学数据来实现。这种方法的优势在于,Sentinel-1 提供全天候、全天气的数据采集能力,而 Sentinel-2 则提供了高分辨率的多光谱图像,能够捕捉详细的地表特征。 以下是具体方法: #### 数据准备 为了进行土地覆盖变化分析,需要获取 Sentinel-1 和 Sentinel-2 的原始数据。这些数据可以从 Google Earth Engine (GEE) 或 Copernicus Open Access Hub 下载[^1]。对于时间序列分析,建议选择多个时间段内的数据以观察长期趋势。 #### 预处理步骤 预处理阶段包括校正大气效应、辐射定标以及几何配准等操作。针对 Sentinel-1 数据,通常还需要去噪和地形校正;而对于 Sentinel-2,则需执行云检测并去除云层影响的部分像素[^2]。 #### 特征提取 基于 Sentinel-2 可计算多种植被指数如 NDVI(归一化差分植被指数)、NDWI(归一化差分水体指数),用于区分不同类型的表面覆盖物。另一方面,由于微波信号穿透能力强的特点,Sentinel-1 VH/VV 后向散射系数可以反映土壤湿度状况或者建筑结构密度的变化情况[^3]。 #### 时间序列分析 构建长时间跨度的时间序列模型可以帮助识别季节性波动之外的土地用途转变现象。例如,在森林砍伐区域可能会发现先是从较高的NDVI值下降到接近零甚至负数区间再逐渐回升的过程;而在城市扩张过程中则可能看到建筑物增加引起后向散射强度增大的迹象。 #### 结果验证与解释 最后一步是对分类结果进行精度评估并与实地调查资料对比确认其准确性。这一步骤非常重要因为它直接影响最终决策制定的质量。 ```python import ee # 初始化 GEE ee.Initialize() # 加载 Sentinel-1 和 Sentinel-2 图像集合 s1 = ee.ImageCollection('COPERNICUS/S1_GRD') s2 = ee.ImageCollection('COPERNICUS/S2') # 定义研究区范围 roi = ee.Geometry.Rectangle([longitude_min, latitude_min, longitude_max, latitude_max]) # 过滤时间和地理条件下的 S1 和 S2 数据 filtered_s1 = s1.filterBounds(roi).filterDate('start_date', 'end_date') filtered_s2 = s2.filterBounds(roi).filterDate('start_date', 'end_date').filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', cloud_threshold)) # 计算 NDVI 和其他指标... ndvi = filtered_s2.map(lambda image: image.normalizedDifference(['B8', 'B4']).rename('NDVI')) # 显示或导出结果 Map.addLayer(ndvi.mean(), {'min': -1, 'max': 1}, 'Average NDVI') ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值