1985 年至 2020 年全球 30 米不透水表面动态数据集 (GISD30)

GISD30是一个基于Landsat卫星数据的全球30米分辨率不透水表面动态数据集,自1985年至2020年,它在城市可持续发展、碳排放评估及生态建模中提供重要信息。利用GoogleEarthEngine的云计算,该数据集展示了不透水面的时空变化,准确度高达90.1%,揭示了全球尤其是亚洲显著的城市扩张趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全球 30 米不透水表面动态数据集 (GISD30)


全球 30 米不透水表面动态数据集 (GISD30) 为了解 1985 年至 2020 年全球不断变化的不透水表面景观提供了宝贵的资源。该数据集在城市可持续发展、人为碳排放评估和全球生态环境建模等领域具有深远的科学意义和实际应用价值。GISD30 是通过一种创新的自动化方法精心创建的,该方法充分利用了光谱泛化和自动样本提取策略的优势。该数据集利用谷歌地球引擎云计算平台上的时间序列大地遥感卫星图像,提供了有关不透水表面动态的全面见解。

在数据集创建过程中,自动提取了全球训练样本和相应的反射光谱,从而提高了准确性和可靠性。考虑到不透水表面在不同时间和地理瓦片上的动态性质,采用了时空自适应分类模型。此外,还引入了时空一致性校正方法,以提高不透水表面动态的可靠性。GISD30 动态模型的准确度非常高,总体准确度为 90.1%,卡帕系数为 0.865,并通过 23,322 个全球时间序列样本的大量数据集进行了验证。通过该数据集,我们可以深入了解从 1985 年到 2020 年的 35 年间,全球不透水表面积翻了一番,其中亚洲的增幅最大。GISD30 数据集可免费访问,是在区域和全球范围内监测城市化的重要工具,为各种应用提供了宝贵的支持。在此访问该数据集(Liu 等人,2021b)。

全球动态数据集用于标注单一波段的扩展信息;具体而言,1985 年前的透水面积和不透水面积分别标注为 0 和 1,1985-1990 年、1990-1995 年、1995-2000 年、2000-2005 年、2005-2010 年、2010-2015 年和 2015-2020 年期间扩展的不透水面积分别标注为 2、3、4、5、6、7 和 8。

前言 – 人工智能教程

波段

YearsImpervious Surface Labels
Before 19851
1985–19902
1990–19953
1995–20004
2000–20055
2005–20106
2010–20157
2015–20208

引用

Zhang, X., Liu, L., Zhao, T., Gao, Y., Chen, X., and Mi, J.: GISD30: global 30 m impervious-surface dynamic dataset from 1985 to 2020 using
time-series Landsat imagery on the Google Earth Engine platform, Earth Syst. Sci. Data, 14, 1831–1856,
https://doi.org/10.5194/essd-14-1831-2022, 2022

数据引用

Liangyun,Liu; Xiao,Zhang; Tingting,Zhao; Yuan,Gao; Xidong,Chen; Jun,Mi. (2021). GISD30: global 30-m impervious surface dynamic dataset from 1985 to
2020 using time-series Landsat imagery on the Google Earth Engine platform [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5220816

代码

var gisd30 = ee.Image("projects/sat-io/open-datasets/GISD30_1985_2020");

//zoom to an urban center
Map.setCenter(31.16387, 30.97292,8)

var palette = ["#808080", "#006400", "#228B22", "#32CD32", "#ADFF2F", "#FFFF00", "#FFA500", "#FF0000"];

var snazzy = require("users/aazuspan/snazzy:styles");
snazzy.addStyle("https://snazzymaps.com/style/132/light-gray", "Grayscale");

Map.addLayer(gisd30,{min:1,max:8,palette:palette},'GISD 30')


var gisd30 = ee.Image("projects/sat-io/open-datasets/GISD30_1985_2020");
//zoom to an urban center
Map.setCenter(31.16387, 30.97292,8)

var gisd_vis = ["#808080", "#006400", "#228B22", "#32CD32", "#ADFF2F", "#FFFF00", "#FFA500", "#FF0000"];

var snazzy = require("users/aazuspan/snazzy:styles");
snazzy.addStyle("https://snazzymaps.com/style/132/light-gray", "Grayscale");

// Define a dictionary which will be used to make legend and visualize image on map
var dict = {
  "names": [
    "Before 1985",
    "1985-1990",
    "1990-1995",
    "1995-2000",
    "2000-2005",
    "2005-2010",
    "2010-2015",
    "2015-2020",
  ],
  "colors": [
    "#808080",
    "#006400",
    "#228B22",
    "#32CD32",
    "#ADFF2F",
    "#FFFF00",
    "#FFA500",
    "#FF0000"]};
  // Create a panel to hold the legend widget
  // Create a panel to hold the legend widget
// Create a panel to hold the legend widget
var legend = ui.Panel({
  style: {
    position: 'bottom-left',
    padding: '8px 15px'
  }
});

// Function to generate the legend
function addCategoricalLegend(panel, dict, title) {
  
  // Create and add the legend title.
  var legendTitle = ui.Label({
    value: title,
    style: {
      fontWeight: 'bold',
      fontSize: '18px',
      margin: '0 0 4px 0',
      padding: '0'
    }
  });
  panel.add(legendTitle);
  
  var loading = ui.Label('Loading legend...', {margin: '2px 0 4px 0'});
  panel.add(loading);
  
  // Creates and styles 1 row of the legend.
  var makeRow = function(color, name) {
    // Create the label that is actually the colored box.
    var colorBox = ui.Label({
      style: {
        backgroundColor: color,
        // Use padding to give the box height and width.
        padding: '8px',
        margin: '0 0 4px 0'
      }
    });
  
    // Create the label filled with the description text.
    var description = ui.Label({
      value: name,
      style: {margin: '0 0 4px 6px'}
    });
  
    return ui.Panel({
      widgets: [colorBox, description],
      layout: ui.Panel.Layout.Flow('horizontal')
    });
  };
  
  // Get the list of palette colors and class names from the image.
  var palette = dict['colors'];
  var names = dict['names'];
  loading.style().set('shown', false);
  
  for (var i = 0; i < names.length; i++) {
    panel.add(makeRow(palette[i], names[i]));
  }
  
  Map.add(panel);
  
}

addCategoricalLegend(legend, dict, 'Impervious Surface (Years)');

Map.addLayer(gisd30, {min:1,max:8,palette:gisd_vis}, 'Impervious Surface (Years)');

Sample code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:/global-landuse-landcover/GLOBAL-IMPERVIOUS-30-GISD

License

This work is licensed under a Creative Commons Attribution 4.0 International License. You are free to copy and redistribute the material in any medium or format, and to transform and build upon the material for any purpose, even commercially. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Created by : Zhang, X., Liu, L., Zhao, T., Gao, Y., Chen, X., and Mi, J.

Curated in GEE by: Samapriya Roy

Keywords: Landsat, Urban, Google Earth Engine, Impervious area, Urban expansion, global dataset

 

2010全球30m分辨率陆表水域数据集(GlobeLand30_WTR2010)是中国捐赠给联合国(20149月)的全球30m分辨率土地覆盖数据集(2010)中十个数据集之一。陆表水域是地表覆盖的重要组成部分。该数据集依托全球地表覆盖遥感制图项目,根据全球优选(无云或少云)的2010及前后1-2间9907景30m空间分辨率的美国陆地资源卫星(Landsat)TM5、ETM 多光谱影像数据及2640景中国环境减灾卫星(HJ-1)多光谱影像数据。在数据预处理基础上,利用基于像元的水域综合提取、面向对象的图斑处理和人机交互的数据优化等遥感提取方法,兼顾陆表水域遥感提取的高效性和准确性,形成了2010全球30m分辨率陆表水域数据集(GlobeLand30_WTR2010)。该数据经过部分地区的抽样检验。数据集采用分幅方式组织数据文件,总计759个数据文件组,每个文件组包括3类数据文件,分别为以.Tif, .tfw格式存储的实体数据、以.shp格式存储的数据开发应用的遥感影像数据信息和以.xml格式存储的元数据信息。为便利获取和网络共享,实体数据被分为5个压缩数据文件包(.rar数据格式)。其中,GlobeLand30_WTR2010_1.rar是欧洲和亚洲72?E以西的地表水域数据集文件包;GlobeLand30_WTR2010_2.rar是亚洲72?E以东的地表水域数据集文件包;GlobeLand30_WTR2010_3.rar是北美洲50?以北的地表水域数据集文件包;GlobeLand30_WTR2010_4.rar是北美洲50?以南和南美洲的地表水域数据集文件包;GlobeLand30_WTR2010_5.rar是非洲和大洋洲的地表水域数据集文件包。此外,数据集中包括一个附录数据说明文件(GlobeLand30_WTR2010.xlsx)。数据表明,2010全球陆表水域总面积为367.54万km2。全球陆表水域的空间分布均匀。其中,北美洲占据全球地表水域面积40%以上
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值