GEE数据集——美国干旱监测数据集(更新)

美国干旱监测


美国干旱监测》是每周四发布的地图,显示美国部分地区的干旱情况。该地图采用五种分级:异常干旱(D0),显示可能进入或即将摆脱干旱的地区;四级干旱:中度(D1)、严重(D2)、极度(D3)和异常(D4)。前言 – 人工智能教程

干旱监测仪自 1999 年推出以来,一直由内布拉斯加大学林肯分校的国家干旱缓解中心 (NDMC)、美国国家海洋与大气管理局 (NOAA) 和美国农业部 (USDA) 联合制作。内布拉斯加大学林肯分校的 NDMC 负责管理干旱监测网站和相关数据,并向 NOAA、USDA 和其他机构提供地图和数据。可在 droughtmonitor.unl.edu 免费获取。

与人们在新闻中看到的大多数天气图不同,《美国干旱监测》不是预报。事实上,它是向后看的。它是根据截至地图发布前的周二上午的降水量,每周对干旱状况进行的评估。这就给了作者大约两个工作日来查看最新数据。如果干旱地区在周三降下大量降雨,最快也要到下周才能从地图上消除干旱。干旱是一种移动缓慢的灾害,因此可以肯定,如果某个地区没有降雨,它仍将处于干旱状态。但也可能需要不止一场好雨才能结束干旱,特别是如果一个地区已经干旱了很长时间。 

 

预处理


干旱监测 GIS 数据以矢量文件的形式提供。为了创建一致的数据结构,从 2000 年开始,以每周为周期,摄取所有年份的形状文件。这些数据有 5 个不同的干旱等级/类别,并以 DM(干旱监测等级/类别值)作为栅格属性转换成栅格。这使得数据的收集和分析更加容易。添加了开始和结束日期,以发布周日期作为结束日期,一周前作为开始日期。目前,我们的目标是不断更新该数据集,使其与源数据集保持同步。

地球引擎片段

 

var usdm = ee.ImageCollection("projects/sat-io/open-datasets/us-drought-monitor");

波段信息 

代码样例: 

https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:weather-climate/UNITED-STATES-DROUGHT-MONITOR

Earth Engine App: 

usdm-explorer

License

The work is licensed under an Open data license for use.

The U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center
at the University of Nebraska-Lincoln, the United States Department of Agriculture
and the National Oceanic and Atmospheric Administration. Map courtesy of NDMC.

Produced by : National Drought Mitigation Center at the University of Nebraska-Lincoln, the United States Department of Agriculture, and the National Oceanic and Atmospheric Administration. Map courtesy of NDMC

Processed secondary/formatted & Curated by: Samapriya Roy

Keywords: "National Drought Mitigation Center, NDMC, Drought, University of Nebraska-Lincoln, United States Department of Agriculture, USDA, National Oceanic and Atmospheric Administration, NOAA, USDM"

Last updated: 2021-04-24

 

### Google Earth Engine C01 和 C02 数据集信息及差异 在探讨Google Earth Engine (GEE) 平台上的C01和C02数据集之前,重要的是理解这些数据集代表特定类型的遥感影像合。这类数据集通常用于环境监测、气候变化研究等领域。 #### C01 数据集特性 C01数据集主要指代早期版本的处理标准或特定传感器的数据产品。具体来说: - **时间范围**:可能覆盖较早的时间段。 - **分辨率**:取决于具体的卫星传感器,但一般保持原有传感器的技术规格不变[^1]。 - **应用领域**:适合长期变化分析,尤其是对比新旧情况的研究项目。 #### C02 数据集特性 相比之下,C02数据集往往意味着更新的标准或是改进后的算法应用于相同或不同源的数据上。这包括但不限于: - **增强功能**:引入更先进的校正方法来减少噪声并提高准确性。 - **扩展内容**:增加了新的波段组合或其他辅助信息层。 - **优化性能**:通过机器学习等技术实现更快捷高效的处理流程。 #### 主要区别总结 两个系列之间的核心差别体现在技术和应用场景两方面: - 技术层面:随着科技的进步,后续发布的版本会成更多现代信息技术成果;而初期版本则反映了当时技术水平下的最佳实践。 - 应用场景:对于追求历史连续性的科研工作者而言,选择最早期稳定版可能是更好的决定;而对于希望利用最新工具和技术的人来说,则应考虑采用最新的迭代版本。 ```python import ee ee.Initialize() # 加载C01和C02数据集作为示例(实际名称需根据官方文档确认) c01_dataset = ee.ImageCollection('LANDSAT/LT05/C01/T1_SR') c02_dataset = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') print(f"C01 Dataset Size: {c01_dataset.size().getInfo()}") print(f"C02 Dataset Size: {c02_dataset.size().getInfo()}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值