Google Earth Engine——使用STARFM 图像融合算法将Landsat 和 MODIS 融合得出2000-2023 NDVI长时序图(空间分辨率为 30 米、时间分辨率为 16 天)

本文介绍如何使用STARFM算法结合Landsat和MODIS数据,生成2000年至2023年肯塔基州三个地区的30米分辨率、16天时间间隔的NDVI序列。通过对野葛入侵现象的分析,展示了STARFM在融合高空间分辨率和高时间分辨率图像方面的应用,以辅助生态系统的监测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

本文通过参考以下的文章实现了Analyzing the phenologic dynamics of kudzu (Pueraria montana) infestations using remote sensing and the normalized difference vegetation index.

 

摘要

非本地入侵物种是全球生态系统面临的主要威胁之一。野葛(Pueraria montana)是一种生长迅速的藤本植物,原产于亚洲,现已入侵美国一些地区,因此该物种的管理成为一个重要问题。利用 Landsat 和 MODIS 平台收集的数据,计算了 2000 年至 2015 年肯塔基州三个侵扰地点的归一化差异植被指数(NDVI)估算值。使用 STARFM 图像融合算法将大地遥感卫星和 MODIS 得出的 NDVI 结合成空间分辨率为 30 米、时间分辨率为 16 天的时间序列。融合后的时间序列使用 "季节和趋

Landsat图像MODIS图像融合是一种常见的遥感数据融合技术,可以提供更详细全面的地表信息。以下是一种常用的方法来实现LandsatMODIS图像融合: 1. 数据获取:首先,获取需要融合LandsatMODIS图像数据。这些数据可以从相应的数据提供商或遥感数据门户网站获取。 2. 空间对齐:由于LandsatMODIS图像具有不同的空间分辨率,需要进行空间对齐,以确保它们在相同的地理坐标系统下对齐。可以使用地理参考点或控制点匹配等方法来实现空间对齐。 3. 辐射校正:对LandsatMODIS图像进行辐射校正,以消除大气地表反射率等因素的影响。可以使用校正模型大气校正参数来进行辐射校正。 4. 分辨率匹配:由于LandsatMODIS图像具有不同的空间分辨率,需要将它们调整到相同的分辨率水平。可以使用插值方法,如双线性插值或多项式插值,将图像调整到相同的像素大小。 5. 融合方法:选择适当的融合方法将LandsatMODIS图像融合在一起。常用的融合方法包括基于像素的融合、基于对象的融合、基于统计的融合等。这些方法可以根据具体需求选择,以保留并整合两个数据集最有用的信息。 6. 后处理:对融合后的图像进行后处理,如去噪、边缘增强、色彩调整等,以提高图像质量可视化效果。 需要根据具体应用数据要求进行调整优化,上述步骤仅为一般性指导。此外,还可以结合其他数据源技术,如地形数据或其他遥感数据,进一步提高融合结果的精度效果。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值