GEE案例:基于Landsat数据构建的NDVI二叉决策树示例

目录

简介

算法

a binary decision tree

函数

updateMask(mask)

Arguments:

Returns: Image

代码

结果


简介

基于Landsat数据构建的NDVI二叉决策树示例

算法

a binary decision tree

决策树是一种常用的机器学习算法,用于分类和回归问题。其中,二叉决策树是决策树的一种形式,它将数据集通过特征的二分进行分割。下面我们将详细介绍二叉决策树的原理、建立和应用。

一、原理: 二叉决策树按照特征的二分进行分割,即每个内部节点都有一个特征和一个阈值。根节点包含整个数据集,通过某个特征和阈值将数据集分为两个子集。根据样本的特征值与阈值的比较结果,将样本进一步分配到左子树或右子树。叶节点表示最终的分类或回归结果。可以将二叉决策树看作是一系列二分判定的集合,每次按特征的阈值进行二分,直到满足停止条件为止。

二、建立: 建立二叉决策树的过程是一个递归的过程。具体步骤如下:

  1. 根据训练集的特征和标签,选择一个最佳的特征作为根节点。
  2. 决定特征的划分阈值,将样本集分为两个子集,左子集和右子集。
  3. 重复步骤1和步骤2,对每个子集递归地选择最佳的特征和划分阈值,直到满足停止条件为止。停止条件可以是达到一定的深度,或者子集中的样本数小于某个阈值。
  4. 最后&#
### 如何使用Google Earth Engine (GEE) 实现决策树分类 #### 定义特征和类别属性 为了构建决策树模型,首先需要定义输入图像的波段作为特征变量以及训练数据中的类别属性。 ```javascript // 加载影像集合并选择感兴趣的区域 var imageCollection = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') .filterBounds(geometry) .median(); // 添加NDVI等植被指数作为额外特征 var withNDVI = imageCollection.normalizedDifference(['B5', 'B4']).rename('NDVI'); // 合并原始波段与新创建的特征层 var featureImage = imageCollection.addBands(withNDVI); ``` #### 准备训练样本集 收集足够的地面实况点来表示不同土地覆盖类型的分布情况。这些样本地点应该具有明确的地物类型标签以便后续建模过程能够识别它们所属的具体类别。 ```javascript // 导入或手动绘制训练区多边形 var trainingPolygons = /*...*/; // 将矢量转换成像元级别的采样点位 var samples = featureImage.sampleRegions({ collection: trainingPolygons, properties: ['landcover'], // 类别字段名 scale: 30 // 像素分辨率 }); ``` #### 构造决策树分类器 利用`ee.Classifier.decisionTree()`函数初始化一个新的决策树实例,并设置相应的超参数配置选项以优化性能表现[^2]。 ```javascript // 设置决策树参数 var decisionTreeParams = { maxNodes: 10, // 最大节点数限制 }; // 创建单棵决策树分类器对象 var classifier = ee.Classifier.decisionTree(decisionTreeParams); // 训练该分类器 classifier = classifier.train(samples, 'landcover'); ``` #### 应用分类器到整个研究区域内 完成上述准备工作之后就可以把训练完毕后的模型应用于更大范围内的遥感影像上得到最终的土地覆被制图产品了。 ```javascript // 对整景影像执行预测操作 var classifiedImage = featureImage.classify(classifier); // 可视化显示结果 Map.addLayer(classifiedImage, {palette: ['red','green']}, "Land Cover Map"); ``` #### 验证模型准确性 最后一步是对生成的地图产品质量进行检验,通常采用交叉验证的方式获取更加可靠的评价指标。 ```javascript // 获取测试样本子集 var testSet = samples.randomColumn().filter(ee.Filter.lt('random', 0.7)); // 执行误差矩阵分析 var confusionMatrix = classifiedImage.errorMatrix('landcover', 'classification', testSet); print(confusionMatrix.accuracy()); // 输出总体精度 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值