目录
简介
基于Landsat数据构建的NDVI二叉决策树示例
算法
a binary decision tree
决策树是一种常用的机器学习算法,用于分类和回归问题。其中,二叉决策树是决策树的一种形式,它将数据集通过特征的二分进行分割。下面我们将详细介绍二叉决策树的原理、建立和应用。
一、原理: 二叉决策树按照特征的二分进行分割,即每个内部节点都有一个特征和一个阈值。根节点包含整个数据集,通过某个特征和阈值将数据集分为两个子集。根据样本的特征值与阈值的比较结果,将样本进一步分配到左子树或右子树。叶节点表示最终的分类或回归结果。可以将二叉决策树看作是一系列二分判定的集合,每次按特征的阈值进行二分,直到满足停止条件为止。
二、建立: 建立二叉决策树的过程是一个递归的过程。具体步骤如下:
- 根据训练集的特征和标签,选择一个最佳的特征作为根节点。
- 决定特征的划分阈值,将样本集分为两个子集,左子集和右子集。
- 重复步骤1和步骤2,对每个子集递归地选择最佳的特征和划分阈值,直到满足停止条件为止。停止条件可以是达到一定的深度,或者子集中的样本数小于某个阈值。
- 最后&#