GHSL: 1975 年至 2020 年的全球居住人口估计值以 5 年为间隔以及2025 年和 2030 年的人口预测值数据

目录

GHSL: Global population surfaces 1975-2030 (P2023A)

简介

摘要

Dataset Availability

Dataset Provider

Collection Snippet

Resolution

Bands Table

代码

引用


GHSL: Global population surfaces 1975-2030 (P2023A)

简介

该栅格数据集描述了居住人口的空间分布,以单元居民的绝对数量表示。 1975 年至 2020 年的居住人口估计值以 5 年为间隔,2025 年和 2030 年的人口预测值则来自 CIESIN GPWv4.11,这些人口预测值从普查或行政单位分解到网格单元,并参考了 GHSL 全球建成区地表图层中每一纪元建成区的分布、体积和分类。

有关全球人类居住图层主要产品的更多信息,请参见[全球人类居住图层数据包 2023 报告](https://ghsl.jrc.ec.europa.eu/documents/GHSL_Data_Package_2023.pdf?t=1683540422)。 全球人类居住图层(GHSL)项目得到了欧盟委员会、联合研究中心以及区域和城市政策总局的支持。

摘要

Dataset Availability

1975-01-01T00:00:00 - 2030-12-31T00:00:00

Dataset Provider

EC JRC

Collection Snippet

Copied

ee.ImageCollection("JRC/GHSL/P2023A/GHS_POP")

Resolution

100 meters

Bands Table
NameDescription
population_count

Population count by epoch

代码

var baseChange =
    [{featureType: 'all', stylers: [{saturation: -100}, {lightness: 45}]}];
Map.setOptions('baseChange', {'baseChange': baseChange});
var image1975 = ee.Image('JRC/GHSL/P2023A/GHS_POP/1975');
var image1990 = ee.Image('JRC/GHSL/P2023A/GHS_POP/1990');
var image2020 = ee.Image('JRC/GHSL/P2023A/GHS_POP/2020');
var populationCountVis = {
  min: 0.0,
  max: 100.0,
  palette:
      ['000004', '320A5A', '781B6C', 'BB3654', 'EC6824', 'FBB41A', 'FCFFA4']
};
Map.setCenter(8, 48, 7);
image1975 = image1975.updateMask(image1975.gt(0));
image1990 = image1990.updateMask(image1990.gt(0));
image2020 = image2020.updateMask(image2020.gt(0));
Map.addLayer(image1975, populationCountVis, 'Population count, 1975');
Map.addLayer(image1990, populationCountVis, 'Population count, 1990');
Map.addLayer(image2020, populationCountVis, 'Population count, 2020');

 

引用

Dataset : Pesaresi, Martino; Politis, Panagiotis (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030). European Commission, Joint Research Centre (JRC). PID: http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA

Methodology : Pesaresi, Martino, Marcello Schiavina, Panagiotis Politis, Sergio Freire, Katarzyna Krasnodebska, Johannes H. Uhl, Alessandra Carioli, et al. (2024). Advances on the Global Human Settlement Layer by Joint Assessment of Earth Observation and Population Survey Data. International Journal of Digital Earth 17(1). doi:10.1080/17538947.2024.2390454.

网址推荐

知识星球

知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428https://wx.zsxq.com/group/48888525452428

机器学习

https://www.cbedai.net/xg 

干旱监测平台

慧天干旱监测与预警-首页https://www.htdrought.com/https://www.htdrought.com/

### 关于2025 MCM B题中随机森林算法的应用 针对2025美国大学生数学建模竞赛(MCM)B题,假设该题目涉及环境科学领域内物种分布预测或生态影响评估等问题,则随机森林(Random Forest, RF)作为一种强大的集成学习方法,在处理此类复杂数据集方面表现出显著优势。 #### 4.1 随机森林模型构建与调优 为了提高模型性能,除了基本设置外,还需考虑多个超参数的影响。通过采用网格搜索(Grid Search)[^1] 或者随机搜索(Randomized Search),配合K折交叉验证(K-fold Cross Validation),可以在训练阶段有效地探索不同配置下的最佳表现: ```python from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.ensemble import RandomForestClassifier param_grid = { 'n_estimators': [100, 200], 'max_depth' : [None, 10, 20], } rf_model = RandomForestClassifier(random_state=42) grid_search = GridSearchCV(estimator=rf_model, param_grid=param_grid, cv=5, n_jobs=-1, verbose=2) ``` 此部分代码展示了如何利用`sklearn`库中的工具来进行参数优化过程[^1]。 #### 数据预处理与特征工程 在实际比赛中,原始数据往往需要经过一系列清洗、转换操作才能被用于建立有效的预测模型。这包括但不限于缺失填补、异常点检测以及创建新的衍生变量等步骤。特别是当涉及到地理空间信息时,可能还需要引入额外的数据源来增强解释力。 对于特定应用场景——比如分析某地区内的生物多样性变化趋势——可以通过遥感影像获取植被覆盖度、土壤湿度等因素作为输入特征;而对于人口密度、经济发展水平等人文学科指标,则可以从公开统计数据集中获得补充资料[^3]。 #### 结果解读与可视化展示 完成建模之后,重要的一环是对所得结论做出直观呈现。借助matplotlib、seaborn等绘图包能够帮助参赛队伍更好地理解模型内部机制及其对外部条件响应特性。例如绘制决策树结构图、计算各属性的重要性得分等等。 ```python import matplotlib.pyplot as plt import seaborn as sns def plot_feature_importances(model): n_features = X.shape[1] plt.figure(figsize=(8,6)) plt.barh(range(n_features), model.feature_importances_, align='center') plt.yticks(np.arange(n_features), feature_names) plt.xlabel("Feature importance") plt.ylabel("Feature") plt.ylim(-1,n_features) plot_feature_importances(rf_model) plt.show() ``` 这段脚本说明了怎样制作条形统计图表以显示各个自变量对最终输出贡献程度大小的关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值